Enabling Scalable Social Group Analyftics via
Hypergraph Analysis Systems

Benjamin Heintz, Abhishek Chandra
University of Minnesota
Minneapolis, MN

{heintz, chandral}@cs.umn.edu

1. Motivation

Rapid growth of social data
* Likes 'i

e Tweets
e Publications

* Importance / centrality / influence
e Community detection

* Shortest paths

* [Information flow

Need to transform data into knowledge ‘

State of the art: systems for graph computation
* Pregel
* GraphLab (Dato)

YA V2
* Problem: poor model for groups

 Apache Spark GraphX

To better model social group structure and behavior,
“we need hypergraph computing systems. |

N ()

hyperedge vertex

3. Implementation Challenges

Closely related questions, i
_constrained by underlying platform |

R RO .,

>
How to represent the hypergraph: @/

0'0 — Bipartite graph

‘@ @ Obscures differences between

@' hyperedges, vertices

v Portable to any graph system
ofc
Multigraph > ? @
V2 el
ed

© Limited system support

@ Hard to implement with 2 Q 62\) 3
existing APls V3 :2 .
v Can exploit differences

between vertices, hyperedges @ <V_3)

How to partition the representation?

* Critical for distributed computation

* Graph: cut edges, cut vertices (PowerGraph), or both

 Hypergraph: partition underlying graph, or use a
hypergraph-aware approach

4. Experimental Evaluation

2. A Hypergraph API

trait HyperGraph[HVD, HED] A
def computel[ToE, ToV](:
maxIters: Int, '
initialMsg: ToV,
hvProgram: Program[HVD, ToV, ToE],
heProgram: Program[HED, ToE, ToV])
: HyperGraph[HVD, HED]

¥

object HyperGraph {
trait Program[A, InMsg, OutMsgl {
def messageCombiner: MessageCombiner [OutMsg]
def procedure: Procedurel[A, InMsg, OutMsg]

e

¥
type MessageCombiner[Msgl = (Msg, Msg) => Msg

type Procedure[A, InMsg, OutMsgl =
(Int, NodeId, A, InMsg, Context[A, OutMsg]) => Unit

trait Context[A, OutMsg] {
def become(attr: A): Unit |
def send(msgF: NodelId => QOutMsg, Message flow:

Vertex and hyperedge programs

to: Recipients): Unit * vertex = hyperedge
* hyperedge = vertex

Proof-of-concept prototype
* Implemented on Apache Spark GraphX 1.2.1
 Run on shared 6-node cluster (2x6-core, 24GB RAM each)

* Using bipartite graph representation

. Bipartite 1-mode
HYPETECEEs Projection Edges

952,115 916,947
authors collaborations

DBLP 2,768,930 21,592,883

7,944,949 1,620,991

. 23,479,217 >15.1B
users communities

Friendster

--

Hypergraph PageRank: Friendster

=== PR PR-Entropy T '
3000 /

o
€ 2000 (]
P r
c : °
o I
£ 1000 - Performance heavily affected by
(S} 1
() 1
X ! .
* - Dataset + Algorithm
0 5 10 15 20 -~ i T :
Number of Bivartite Edges * Representation + Partitioning
(millions) - MRRRRRRRRRAARRRARARRRRRRARRRRRRARRRARARRRRRRARRARRRRRRRRRRRRRRRRRARRANS
Hypergraph PageRank: DBLP Partitioning: DBLP
«=f==PR PR-Entropy W Cut Vertices Cut Hyperedges Cut Both
700
z 600
E 2 500 =
= 600 "
§ '§4oo BN - S—— o
> c
g % ; £300 S -
Ll (S
0 | | | :,5200 — — ——
0 1 2 3 100 - 4. ——
Number of Bipartite Edges 0 _:- | |
(millions) PR PR-Entropy

This work was supported by NSF Grant 11S-1422802.

