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Rapid&growth&of&social data
• Likes

• Tweets

• Publications

Need&to&transform&data&into&knowledge
• Importance&/&centrality&/&influence

• Community&detection

• Shortest&paths

• Information&flow

State&of&the&art:&systems&for&graph computation

• Pregel

• GraphLab (Dato)

• Apache&Spark&GraphX

• Problem:&poor&model&for&groups

trait HyperGraph[HVD, HED] {
def compute[ToE, ToV](

maxIters: Int,
initialMsg: ToV,
hvProgram: Program[HVD, ToV, ToE],
heProgram: Program[HED, ToE, ToV])
: HyperGraph[HVD, HED]

}

object HyperGraph {
trait Program[A, InMsg, OutMsg] {

def messageCombiner: MessageCombiner[OutMsg]
def procedure: Procedure[A, InMsg, OutMsg]

}

type MessageCombiner[Msg] = (Msg, Msg) => Msg

type Procedure[A, InMsg, OutMsg] =
(Int, NodeId, A, InMsg, Context[A, OutMsg]) => Unit

trait Context[A, OutMsg] {
def become(attr: A): Unit
def send(msgF: NodeId => OutMsg,

to: Recipients): Unit
}

}

Listing 1: Key abstractions from our hypergraph API
(expressed in Scala).

tices using only 19 lines of code. Further computing hy-
peredge ranks requires only a single line of additional
code. An even richer version which also computes the
entropy of each hyperedge requires fewer than 25 lines
of code.

Note that a user might be able to implement the same
algorithms without using the hypergraph abstraction ex-
plicitly or using our API. For instance, for the simplest
PageRank variant, where we compute only vertex ranks,
it is possible to define a transformation function from the
input hypergraph to a weighted graph such that an ex-
isting graph PageRank algorithm yields identical results.
We refer to this weighted graph as the one-mode projec-
tion of the original hypergraph. Such a transformation,
however, is highly non-trivial requiring significant devel-
oper time and effort, and the resulting graph consumes
significantly more space than a hypergraph representa-
tion (see Section 5). Further, this approach does not ap-
ply to the richer algorithm variants, as they require mod-
eling hyperedges as first-class entities. An alternative
approach could be to use an affiliation network model
explicitly capturing group affiliations of users [8]. How-
ever, such an approach is also tedious and error-prone,
and many existing graph processing abstractions (such
as GraphX’s Pregel implementation) cannot be applied
without modification. Yet another disadvantage of such
approaches is that, by disguising hypergraphs as graphs,
they preclude any hypergraph-aware optimization at the
underlying system level.

4 Implementation Issues

Next, we explore two key issues involved in the imple-
mentation of our hypergraph computing API: how to rep-
resent the hypergraph at the system level, and how to par-
tition this hypergraph for distributed computation.

4.1 Representation
The choice of the underlying platform has a major impact
on how we represent hypergraphs at the system level. If
using an underlying graph processing platform, we can
represent the hypergraph as a bipartite graph, where one
partition comprises exclusively hypervertices, and the
other exclusively hyperedges, with low-level graph edges
connecting hyperedges to their constituent hypervertices.
If the underlying platform provides a more flexible multi-
graph abstraction, allowing multiple parallel edges be-
tween pairs of vertices, then we can represent hyperver-
tices using graph vertices, and hyperedges using labeled
graph edges: any two vertices that belong to a common
hyperedge h are connected by an edge with label h. If
we instead implement our API directly on a general dis-
tributed computing framework such as Hadoop or Spark,
then there is much more flexibility of representation.

While these alternative representations are all equally
valid, each has its strengths and weaknesses. One key ad-
vantage of the bipartite graph representation is its porta-
bility: it can be implemented on any graph computing
system. For example, the underlying dataflow for our
compute method is a natural extension of the dataflow
in the existing GraphX Pregel implementation. How-
ever, a straightforward transformation that does not dis-
tinguish between the two distinct types of entities—
hyperedges and hypervertices—can result in suboptimal
performance. Hyperedges and hypervertices may have
significantly different characteristics including attribute
sizes, degree/cardinality distribution, and behavior of
their respective Programs, resulting in poor I/O perfor-
mance and load imbalance. As a result, the underlying
system must use mechanisms and optimizations that are
aware of these differences.

A multigraph representation, on the other hand, repre-
sents hypervertices and hyperedges using distinct under-
lying entities (viz., vertices and edges respectively), and
as a result avoids these potential performance pitfalls.
One limitation, however, is that only a few existing graph
computing platforms (such as GraphX) provide a multi-
graph abstraction. Additionally, mapping our hypergraph
API into this representation would require a completely
different dataflow than is provided directly by existing
systems. Compared to the bipartite representation, this
representation might also be more storage-intensive, es-
pecially if the hypergraph contains many large hyper-
edges. This problem could be addressed through intel-
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To&better&model&social&group structure&and&behavior,&
we&need&hypergraph computing&systems.

v1 v2

v3

Iterative computation

v1 v2

v3
hyperedge vertex

v1 v2

v3

v1 v2

v3

Dataset Vertices Hyperedges Bipartite
Edges

1;mode=
Projection=Edges

DBLP 952,115&

authors

916,947

collaborations
2,768,930 21,592,883

Friendster 7,944,949

users

1,620,991&

communities
23,479,217 >"15.1"B

Performance&heavily&affected&by

• Dataset&+&Algorithm

• Representation&+&Partitioning
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Scalability is&a&real&challenge.

ProofUofUconcept prototype

• Implemented&on&Apache&Spark&GraphX 1.2.1

• Run&on&shared&6Unode&cluster&(2x6Ucore,&24GB&RAM&each)

• Using&bipartite&graph&representation
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How&to&represent the&hypergraph? v1 v2
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How&to&partition the&representation?
• Critical&for&distributed&computation

• Graph:&cut&edges,&cut&vertices&(PowerGraph),&or&both

• Hypergraph:&partition&underlying&graph,&or&use&a&

hypergraph.aware approach

Multigraph
Limited&system&support

Hard&to&implement&with&

existing&APIs

Can&exploit&differences&

between&vertices,&hyperedges

Bipartite=graph
Obscures&differences&between&

hyperedges,&vertices

Portable&to&any&graph&system

Closely&related&questions,&

constrained&by&underlying&platform

Vertex&and$hyperedge programs

Message=flow:
• vertex&! hyperedge

• hyperedge! vertex
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