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1. Motivation

Rapid growth of social data
* Likes 'i

e Tweets
e Publications

* Importance / centrality / influence
e Community detection

* Shortest paths

* [Information flow

Need to transform data into knowledge ‘

State of the art: systems for graph computation
* Pregel
* GraphLab (Dato)

YA V2
* Problem: poor model for groups

 Apache Spark GraphX

To better model social group structure and behavior,
“we need hypergraph computing systems. |
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3. Implementation Challenges

Closely related questions, i
_constrained by underlying platform |
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How to represent the hypergraph: @/

0'0 — Bipartite graph

‘@ @ Obscures differences between

@' hyperedges, vertices

v Portable to any graph system
ofc
Multigraph > ? @
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© Limited system support

@ Hard to implement with 2 Q 62\) 3
existing APls V3 :2 .
v Can exploit differences

between vertices, hyperedges @ <V_3)

How to partition the representation?

* Critical for distributed computation

* Graph: cut edges, cut vertices (PowerGraph), or both

 Hypergraph: partition underlying graph, or use a
hypergraph-aware approach

4. Experimental Evaluation

2. A Hypergraph API

trait HyperGraph[HVD, HED] A
def computel[ToE, ToV]( :
maxIters: Int, '
initialMsg: ToV,
hvProgram: Program[HVD, ToV, ToE],
heProgram: Program[HED, ToE, ToV])
: HyperGraph[HVD, HED]

¥

object HyperGraph {
trait Program[A, InMsg, OutMsgl {
def messageCombiner: MessageCombiner [OutMsg]
def procedure: Procedurel[A, InMsg, OutMsg]

e

¥
type MessageCombiner[Msgl = (Msg, Msg) => Msg

type Procedure[A, InMsg, OutMsgl =
(Int, NodeId, A, InMsg, Context[A, OutMsg]) => Unit

trait Context[A, OutMsg] {
def become(attr: A): Unit |
def send(msgF: NodelId => QOutMsg, Message flow:

Vertex and hyperedge programs

___________________________________________________________

to: Recipients): Unit * vertex = hyperedge
* hyperedge = vertex

Proof-of-concept prototype
* Implemented on Apache Spark GraphX 1.2.1
 Run on shared 6-node cluster (2x6-core, 24GB RAM each)

* Using bipartite graph representation

. Bipartite 1-mode
HYPETECEEs Projection Edges
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------------------------------------------------------------------------------

Hypergraph PageRank: Friendster
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