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Abstract. The study of small collaborations or teams is an important
endeavor both in industry and academia. The social phenomena respon-
sible for formation or evolution of such small groups is quite different
from those for dyadic relations like friendship or large size guilds (or
communities). In small groups when social actors collaborate for various
tasks over time, the actors common across collaborations act as bridges
which connect groups into a network of groups. Evolution of groups is
affected by this network structure. Building appropriate models for this
network is an important problem in the study of group evolution. This
work focuses on the problem of group recurrence prediction. In order
to overcome the shortcomings of two traditional group network model-
ing approaches: hypergraph and simplicial complex, we propose a hybrid
approach: Weighted Simplicial Complex (WSC). We develop a Hasse dia-
gram based framework to study WSCs and build several predictive mod-
els for group recurrence based on this approach. Our results demonstrate
the effectiveness of our approach.

1 Introduction
With the advent of high-speed internet, collaborations are no longer restricted by
physical proximity. A group of individuals, irrespective of their demographics or
location, can perform a task online. This task might be writing software code (or
a Wikipedia article or a Google Doc) by a group of coders (or editors), or can be a
business meeting involving video chat with colleagues or collaborations in writing
paper [14,19,20,15] or teaming up in online games [13,11,22]. Understanding the
dynamics of such small (social) groups is of increasing research interest in various
sub-disciplines in the social sciences [9], and is of interest to applications that
require high efficiency in the performance of human groups [5,18].

This paper addresses the problem of group evolution, with specific focus on
understanding the causal factors driving the evolution. The overall objective is
to build a model that can predict how a group will evolve in the future, based
on its history. One aspect of special interest is group recurrence, which can be
stated thus: Which group(s) (or its subgroup(s)) among the groups observed so
far, will continue to function as a group, i.e. perform some task again in the
near future?
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Prior studies have demonstrated the significance of recurrence in network
structure (see [27] and references therein). Most work on group evolution in social
networks focuses on the evolution of arbitrary size communities or groups [8].
The sizes of these groups are usually large and the boundaries of the community
depends on the definition of membership used. In this paper we study well-
defined small groups which typically have size ≤ 20. A key difference between
large groups and small groups is that membership in the former is largely based
on identity, i.e. a member identifying himself with the group. In contrast, a
small group is defined principally by the (regular) interaction between group
members, often driven by some purpose, professional or personal. The focus of
this paper is to study the evolution of small groups and, in contrast to classical
social science literature, the objective is to build models that can predict future
behavior, with the final goal of identifying potential causal mechanisms for small
group evolution.

In contrast to prior work, we highlight the distinct nature of small groups
and develop models inspired from social science theories of small groups [9]. A
group can be formed depending on the requirement (fiat teams) or a set of actors
can make an autonomous decision to work together (self assembly [3]). In either
case, individuals find it easier to work with familiar actors [5], making frequency
of activity by a group an important metric. Also, over time, actors build new
relationships while working in different groups. A shared collaboration history is
therefore created, where the same individuals are part of multiple groups, acting
as bridges between groups, and resulting in a network of groups (NOG) (Fig-
ure 1). This is the network perspective of small groups [6] where the network
of groups plays a central role in the group formation process. Moreover, group
formation motives and group communication processes, which are task centered,
are very different from those involved in building friendship ties in a friendship
network or joining a community, e.g., joining a news interest group, being part of
a Facebook community, subscribing to a Youtube channel, or publishing within
a particular research discipline [21,17,16]. Recently, some attempts have been
made to model networks as higher order relational structures such as simplicial
complexes [10,7] and hypergraphs [14,12]. A hypergraph is a generalized graph
where edges, now called hyperdges, instead of representing a relationship be-
tween a pair of vertices, represent a relationship between a set of vertices. If the
relationship holds for every subset of the hyperedge, the hypergraph is called a
simplicial complex. Although hypergraphs are more general, if the problem or
the data has a special structure then simplicial complexes are more appropri-
ate. For the group recurrence problem, we need to predict recurrence of not just
observed groups but also the subgroups. Thus, simplicial complexes are more
applicable to our problem

For the group recurrence problem we also want our model to capture any prior
knowledge associated with each group or subgroup that might indicate cohesion
among group members, or the context associated with the group. We use the
concept of a weighted simplicial complex, which is a simplicial complex where
each simplex has a prior weight associated with it. We develop several schemes
to generate these prior weights, modeling different prior knowledge scenarios.
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We observe that a simplicial complex, from a frequent pattern mining per-
spective [1], is the trivial set of all the frequent patterns of frequency equal to
one, mined from the transactions database of hyperedges. This motivates the
use of a Hasse diagram (Figure 1) [23] (similar to enumeration trees in pattern
mining) as a graph representation for the simplicial complex. If we associate a
weight with each node (representing simplicies) of the Hasse diagram it repre-
sents a weighted simplicial complex. We hypothesize that the topology of these
groups plays a critical role in how past occurrences influence future occurrences
of other (sub)groups.

Using the Hasse diagram, we apply a modification of the HyperPrior al-
gorithm [24], for generating label diffusion-based machine learning models, as
well as develop hierarchical label spreading algorithms for recurrence prediction.
These algorithms make use of the weighted simplicial complex topology while
exchanging the occurrence information between the subgroup nodes in the Hasse
diagram. Our experimental analysis, conducted using the DBLP and EverQuest
II datasets, shows the efficacy of the techniques developed. The main contribu-
tions of this study are:

– We present machine learning models to predict recurrence of already ob-
served groups, which takes into account the higher order topology.

– We present a Hasse diagram-based framework to study simplicial complexes,
hypergraphs, and frequent pattern mining in a unified manner.

– We show that frequent patterns can be considered as topological entities,
with relationships between them guided by higher-order topological proper-
ties. To the best of our knowledge this has not been done before.

The rest of the paper is structured as follows. In Section 2 we describe the
models of network of groups and the problem statement. Methods proposed are
illustrated in Section 3 and Section 4 has experimental analysis.

Fig. 1. Example illustrating a network of groups hypergraph (left) as a simplicial com-
plex (right) and as a Hasse diagram (middle) corresponding to the simplicial complex,
for a scenario where the actors {1,2,3,4,5} have collaberated in the past as groups:
g1 = {1, 2}, g2 = {1, 2, 3, 4} and g3 = {3, 4, 5}.

2 Problem Statement and Preliminaries
2.1 Models for Network of Groups

We have a set of n actors V = {v1, v2, ..., vn}. A subset of these actors can form
a group. We have a collection of m such groups observed in the past, denoted
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by G = {g1, g2, ..., gm} where gi ⊆ V represents the ith group. The cardinality
ci = |gi| of a group is the number of actors in it. We let R(g) denote the number
of times group g ∈ G has occurred. The network of groups can be modeled as a
hypergraph [2] H = (V,G) where the observed groups G are the hyperedges over
the vertex set V of actors. We denote by Si = {sik,∀k ∈ {1, 2, ..., 2|gi|−2}} the set
of all proper subsets of each group gi ∈ G. If we consider the union of all subsets
of the sets in G along with G itself, i.e., C = {G ∪ (

⋃m
i=1 Si)}, then we have

a (abstract) simplicial complex C and each element c ∈ C is a simplex which
represents a group or subgroup. If we also associate a weight W (c) ∈ R,∀c ∈ C,
then we attain a weighted simplicial complex ♦ = (C,W ). For convenience we
also define the set containing the subgroups in C that were never observed in the
past, i.e., Cs = {c|(c ∈ C) ∧ (c 6∈ G)} = (C −G). Each c ∈ Cs also has a set of
groups Q(c) ⊆ G, of which it is a subgroup of, i.e., Q(c) = {x|(x ∈ G)∧(c ⊂ x)}.
We define an occurrence function O which gives the occurrence count to all the
groups in C as follows:

O(c) =


R(c) +

 ∑
x∈Q(c)

R(x)

 when c ∈ G

∑
x∈Q(c)

R(x) when c ∈ Cs
(1)

In words, for an observed group we simply take the number of times it has
occurred, R(c), and also add the counts of the groups it has been a subset of.
In the case of subgroups (those groups that haven’t occurred in the past) we
simply add the counts of the groups it has been a subset of. For a simplex (or
(sub)group) α ∈ C we define its dimension as dim(α) = |α| − 1. If Kmax is
the maximum cardinality of any simplex in C then (Kmax − 1) is the maximum
dimension of any simplex in C or simply the dimension of C.

The set of simplices of cardinality k within the simplicial complex C are
defined by the set: πk = {σ|σ ∈ C ∧ |σ| = k},∀k ∈ {1, ...,Kmax}. For the
example in Figure 1, C = {C1, ...., C19}, G = {g1, g2, g3} = {C6, C19, C18} and
Cs = (C −G).

We also define a Hasse diagram, T , for the simplicial complex C. The level
in the diagram (Figure 1) determines the poset relation. We use the undirected
graph derived from the Hasse diagram T over the vertex set V (T ) = C and
with a set of undirected edges E(T ) = {(x, y) ∪ (y, x)|(x, y ∈ V (T )) ∧ (y ⊂
x)∧(|y| = |x|−1)}. In the case of a weighted simplicial complex ♦ = (C,W ), we
associate with each vertex the weight of the corresponding simplex it represents,
i.e., W (v),∀v ∈ V (T ). Note, we can also associate a weight with the edges but
in this study we assume all edges have a unit weight. We denote A to be the
adjacency matrix of size (|C| × |C|) associated with the graph T .

2.2 Problem Statement

We are interested in prediction of groups formed by two processes: group recur-
rence and subgroup recurrence. In group recurrence, a group gi ∈ G, called a
recurring group, observed in the past can again occur in the future. Our first
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problem is to predict a score for each of the groups in G. This score reflects the
possibility of the given group occurring again in the future. In subgroup recur-
rence, a group ci ∈ Cs which has never been observed as a group in the past,
might occur in the future. We refer to such groups as recurring subgroups. Our
second problem is to predict a score for each of the groups in Cs, which reflects
its possibility to be formed in future. We restrict ourselves to the prediction of
only the recurring groups and subgroups and not groups composed of entirely
new actors.

3 Methods

In this section, we first enumerate several ways of assigning prior weights. We
then describe three different methods (along with several variants) to solve the
problems described in the previous section. Each method models the tendency
of a given group to be formed in the near future by assigning a score S(c) to
each group in c ∈ C, returning a final vector of scores S. The first method uses
a simple group count-based approach and the next two methods consider the
hierarchical structure of the higher order topology within the Hasse diagram.

3.1 Schemes for assigning initial weights

Several studies on small groups have shown that social actors tend to collaborate
with actors with whom they have already developed strong working relationships
[5] and that repeated ties within a group positively affect its performance [3].
There are a number of ways to assign a prior weight to represent the strength
of the relationships between group members. Kapoor et al. [4] defined several
weights for the problem of node centrality, of which we utilize two. The first,
shown in (2), corresponds to a frequency-based definition and simply counts
the number of times a group has performed some task together. The second,
shown in (3), enforces that the average attachment of any two individuals (or
the attention span of a member towards each other member) in a group decreases
in proportion to the size of the group.

W(c) = O(c), ∀c ∈ C (2) W(c) =
log(O(c)) + 1

|c| ,∀c ∈ C (3)

The weights in (2) and (3) initialize all groups (observed) as well as subgroups
(unobserved), i.e., all the simplices. We, therefore, also design slightly different
variants where we only initialize the observed groups, which emphasizes the
hypergraph model of the network:

W(c) =

{
O(c) if c ∈ G
0 if c ∈ Cs

(4) W(c) =


log(O(c)) + 1

|c| if c ∈ G

0 if c ∈ Cs
(5)

In the following sections we will define several algorithms which will use these
four initialization schemes. We will use the suffixes: Simp-C, Simp-W, Hyp-C,
and Hyp-W to refer to the initializations in (2)-(5), respectively.
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3.2 Count Based Scores (CBS)

We build the first set of scores using only the occurrence information available.
For this we simply take the score vector S as the weight defined in (2) and (3),
denoted the CBS-C score and CBS-W score, respectively. The CBS-C score,
gives each group a value which is determined by the number of times the group
members have worked together in past. Whereas, CBS-W assigns score based
upon the cohesion among the group members.

3.3 Hasse Diagram based Models

CBS scores utilize counts of group recurrences, wherein each group was con-
sidered in isolation but do not consider the network of groups. This network
encodes information about the observed groups, the unobserved groups, and the
topological relations between them. Occurrences of a group affect the probabil-
ity of other groups in the network to collaborate in the future. We develop two
approaches applied to a Hasse diagram representation of a weighted simplicial
complex to capture the local and global relational information.

Algorithm 1 GetHDSScores (T,y,Kmax, α)

f ← y, C ← V (T ) {Get the simplicial complex corresponding to the Hasse diagram}
for k = Kmax − 1 to 1 do

for all c ∈ πk do

f(c)← f(c) + α

( ∑
x∈(Q(c)∩πk+1)

y(x)

)
return f

Hasse diagram spread-based scores (HDS Scores) This class of methods
is based upon the intuition that observed groups in the Hasse diagram influ-
ence the subgroups below it in the hierarchy. Influence spread can happen in
a variety of ways. There are several possible counter-intuitive group phenom-
ena. We model these in a holistic fashion by spreading scores over the Hasse
diagram. We propose that if we observe a node gi in the Hasse diagram then
it spreads its score (si) down the hierarchy. It can send the same, more, or
less of its score to its children. In general, it can send αsi (α ≥ 0) score to
its children. These children update their scores and spread the score down
the hierarchy recursively. This is shown in Algorithm 1. We initialize the al-
gorithm using the vectors (y = W) in equations (2)-(5) to get four different
scores, S = GetHDSScores(T,y,Kmax, α), which we denote as HDSSimp-C,
HDSSimp-W, HDSHyp-C and HDSHyp-W, respectively.

Hasse diagram diffusion-based scores: The spread-based scores are local in
the sense that the final score of a node is only determined by its initial score and
the scores of its parent(s). But, in general, the nodes representing groups in the
network are connected by many pathways. Therefore, it is reasonable to assume
that a potential group may be affected by occurrence of non-parent groups in the
network. In order to take into account this structure of the entire Hasse diagram,
we apply a modification of the graph label propagation algorithm HyperPrior
[24].
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Each vertex (group) is initialized with a label, which encodes prior infor-
mation about the recurring tendency of that node. These labels (information)
then diffuse (exchange information) via random-walks through the Hasse dia-
gram network structure. After the random-walks stabilize, the final label for
each vertex is the score indicating its recurrence possibility. The final label at a
given vertex represents the chances that a random walk originating from other
nodes ends at this vertex. Hence, this score is a combination of both the group’s
initial tendency to occur plus an adjustment based on the knowledge from other
groups in the network, i.e., the random walk outcomes. This adjustment models
a network guided similarity between the vertex and the other nodes. Vertices
that are near in the network should end up receiving similar labels/scores.

More formally, let y be the vector of initial labels for the vertices in the Hasse
diagram T with incidence matrix A. Vector y is initialized by any of the weights
in (2)-(5). As in a graph-based learning task, we learn the final label (score)
vector f by taking into account the competing aims of similar labels for vertices
connected by an edge in the Hasse diagram and of similar labels between the
initial and final vectors. We capture these competing aims in the following cost
minimization objective:

min
f

fTLf + β‖f − y‖2 (6)

where, L = I−D
−1/2
v AD

−1/2
v is the normalized graph Laplacian [26] and Dv

is a diagonal matrix consisting of the vertex degrees. The first term in (6) is a
smoothing term which ensures that vertices (groups) sharing an edge (having
common group members) have similar scores. This term therefore, enforces the
Hasse diagram structure while learning the labels. The second term measures the
difference between the given initial labels and the final vertex scores. It can be
shown [26] that the solution to (6) is equivalent to the solution of the following
linear system:

f∗ = (1− µ)(I− µθ)−1y, (7)

where µ = 1/(1 + β), θ = D
−1/2
v AD

−1/2
v , and f∗ is the vector of final labels

of the group nodes. Note that, f∗(c) is the aggregate tendency S(c) of a group
c ∈ C to reoccur. Therefore, we have: S = f∗.

Similar to spread-based scores, we denote the scores here by HDDSimp-C,
HDDSimp-W, HDDHyp-C, and HDDHyp-W when intialized using (2)-(5).
Our aim is to predict a score for the recurring groups (i.e., g ∈ G) and recurring
subgroups (i.e., c ∈ Cs). For each of the methods above, we get a final vector that
contains the scores for all the groups. We partition the vector S into two vectors
Srg and Srs of sizes |G| and |Cs|, respectively, such that Srg(c) = S(c),∀c ∈ G
and Srs(c) = S(c),∀c ∈ Cs. In summary, we obtain three score vectors Srs, Srg

and S for each of the above methods.

4 Experimental Analysis
4.1 Dataset and Statistics

Datasets: The first dataset we apply our methods to is a massive multiplayer
online role-playing game (MMORPG) dataset obtained from the Sony’s Ev-
erQuest II (EQ II) game (www.everquest2.com). The game provides an online
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environment where multiple players can log in and collaborate in groups to per-
form various quests and missions. The server logs from this game, provided by
Sony, were used to extract group interactions. Here, we treat a set of players
performing a task or mission as a group in the EQ II network. The EQ II data
contains logs for 21 weeks of data for training and testing. We divide them into
seven training/testing splits, each of which has a two-week long training period
followed by a one-week testing period.

The second dataset is the DBLP dataset (obtained from www.aminer.org)
containing computer science publications from 1930-2015. The set of co-authors
on a paper form a group in the DBLP network. Note that in both EQII and
DBLP networks, the groups can perform multiple game tasks or co-author mul-
tiple papers. We make eleven train-test splits as follows: (1992 − 95/96 − 98),
(1993−95/96−98), (1993−95/96−99), (1991−97/98−10), (1997−00/01−03),
(1998−00/01−03), (1998−00/01−04), (2002−05/06−08), (2003−05/06−08),
(2003−05/06−09) and (2001−07/08−10) ; following the format: (train period
start year−train period end year/ test period start year−test period end year).
These splits were designed to observe the effect of varying training and test-
ing period lengths as well as varying the entire train/test evaluation period. We
have evaluated other variations of period lengths and other decades in the DBLP
data, but in this paper we limit our discussion to the train/test periods we just
described.

Table 1. Recurrence Statistics of the various Train/Test Periods
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EQ II 3051 2215 81.67 18.33 1775 1219 67.92 32.08 88.93 11.07

Avg. 84.06 15.94 74.01 25.99 90.51 9.49

DBLP 677K 640K 40 60 549K 433K 12.06 87.94 84.53 15.47

Avg. 34.73 65.27 11.65 88.35 81.17 18.83

Statistics: Recall that we have two kinds of groups: (1) recurring groups
that are observed in training and observed again in testing and (2) recurring
subgroups that are observed in testing but are only observed as a subgroup
of some group that occurred in training. We shall refer to the former set as
RG, the latter set as RS, and the combined set as (RG+RS). Table 1 contains
several statistics for (RG+RS). However, due to space constraints, we only show
statistics for the last split from each dataset, as well as the average statistics
across the splits. In Table 1, an actor in the testing phase is considered “old” if
it was observed in the training period, otherwise it is considered “new”. Note
that for any group with new actors in the testing phase, we can only test whether
the subgroup with old actors is a recurring group or subgroup from the training
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Table 2. Different Dimension Face Recurrence Statistics
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EQ II Splits DBLP Splits

Simplex
Dimension

RG+RS
(Exact)

RG+RS
(New Vertices)

RG+RS
(Exact)

RG+RS
(New Vertices)

≥ 1 15.57 21.25 15.70 21.43 4.63 3.09 6.28 4.20
≥ 2 8.97 12.72 9.02 12.80 2.78 1.79 3.41 2.19

RS (Exact) RS (New Vertices) RS (Exact) RS (New Vertices)

≥ 1 0.70 0.71 0.76 0.77 1.70 0.89 3.08 1.61
≥ 2 0.20 0.23 0.25 0.29 0.76 0.38 1.24 0.63

RG (Exact) RG (New Vertices) RG (Exact) RG (New Vertices)

≥ 1 57.18 20.55 57.50 20.66 14.89 2.21 17.53 2.60
≥ 2 45.68 12.49 45.77 12.51 10.02 1.41 11.17 1.57

period. These statistics are based on the distinct groups from the testing and
training periods, so as to avoid any bias from the multiplicity of certain group
interactions. We observe that on an average around 90% of the EQ II network
groups and around 81% of the DBLP network groups formed in the test period
contain at least one old actor. Only within these groups can we possibly search
for recurring groups or subgroups. Note, 74% of the EQ II groups and around
12% of DBLP groups in testing period are exact recurrences and included in the
set RG. This demonstrates that the recurring group process is more common in
the EQ II network, whereas the recurring subgroup process is the more common
feature in the DBLP network.

In Table 2, we record the statistics of the groups in training that recur in
testing and of the groups in testing that are recurring groups or subgroups. We
only consider groups of size ≤ 6 (i.e., faces of dimension ≤ 5) and also omit
vertex recurrences since those are reported in Table 1.

For dimensions ≥ 1, the set RG+RS accounts for 20% of the testing groups
in the EQ II network and 3 − 4% in the DBLP network. For dimensions ≥ 2,
the set RG+RS accounts for approximately 12% of the testing groups in the
EQ II network and only 2% in the DBLP network. These subtle observations
indicate that GR and SR processes are responsible for a significant portion of
future formed groups. Therefore, modeling these processes is an important step
towards higher order link prediction.

4.2 Evaluation Methodology and Experimental Setup

We evaluate the performance of these methods as classifiers using the area under
the curve (AUC) statistic of the receiver operating characteristics (ROC) [25].
Using the three score vectors as the model output we calculated AUC scores for
two sets of prediction test scenarios. The first set includes the exact occurrences
found in the testing period (referred to as “(Exact)”) and the other set includes
occurrences found with new vertices in the testing period (referred to as “(New
Vertices)”). The following six scenarios are considered for each set:
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1. RG+RS(v): Predicting both recurring groups and subgroups that are dyadic
edges or other higher order faces. Note that for any group with new actors
in the testing phase, we can only test whether the subgroup with old actors
is a recurring group or subgroup from the training period.

2. RG+RS(v+e): Predicting both recurring groups and subgroups that are
only triangles or other higher order faces. We only consider groups of size
≤ 6 and also omit vertex recurrences since those are reported in Table 1.

3. RS(v): Predicting only recurring subgroups that are edges or other higher
order faces.

4. RS(v+e): Predicting only recurring subgroups that are triangles or other
higher order faces.

5. RG(v): Predicting only recurring groups that are edges or other higher order
faces.

6. RG(v+e): Predicting only recurring groups that are triangles or other
higher order faces.

The optimal parameters were chosen for each split separately via grid search
on the following parameter space: α = {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 2, 5, 10, 20}
and µ = {10−7, 10−6, 10−5, 10−4, 10−3, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. All the
Hasse diagrams considered in the above methods have un-weighted edges.

Table 3. AUC Scores for EQ II and DBLP

EQ II

Exact New Vertices

Method RG+RS
(v)

RG+RS
(v+e)

RS (v) RS
(v+e)

RG (v) RG
(v+e)

RG+RS
(v)

RG+RS
(v+e)

RS (v) RS
(v+e)

RG (v) RG
(v+e)

HDDHyp-W 0.96 0.98 0.67 0.87 0.79 0.83 0.96 0.97 0.68 0.86 0.79 0.83

HDDHyp-C 0.96 0.98 0.63 0.78 0.83 0.87 0.96 0.98 0.64 0.78 0.82 0.86

HDDSimp-W 0.83 0.81 0.63 0.67 0.78 0.81 0.83 0.81 0.62 0.64 0.78 0.81

HDDSimp-C 0.78 0.75 0.52 0.6 0.83 0.86 0.78 0.75 0.52 0.59 0.83 0.85

CBS-W 0.77 0.68 0.6 0.54 0.78 0.81 0.76 0.68 0.59 0.5 0.78 0.81

CBS-C 0.76 0.72 0.5 0.49 0.82 0.85 0.76 0.72 0.5 0.47 0.82 0.85

HDSHyp-W 0.96 0.97 0.65 0.71 0.79 0.82 0.96 0.97 0.65 0.7 0.79 0.82

HDSSimp-W 0.7 0.59 0.58 0.52 0.76 0.8 0.7 0.59 0.58 0.48 0.76 0.8

HDSHyp-C 0.95 0.97 0.58 0.63 0.83 0.86 0.95 0.97 0.59 0.63 0.82 0.86

HDSSimp-C 0.68 0.61 0.49 0.48 0.82 0.85 0.67 0.6 0.48 0.44 0.82 0.85

DBLP

HDDHyp-W 0.9 0.89 0.8 0.78 0.69 0.68 0.82 0.85 0.73 0.72 0.7 0.68

HDDHyp-C 0.89 0.89 0.79 0.78 0.69 0.68 0.82 0.85 0.73 0.72 0.69 0.68

HDDSimp-W 0.77 0.79 0.73 0.73 0.7 0.69 0.77 0.77 0.74 0.71 0.71 0.69

HDDSimp-C 0.75 0.76 0.71 0.72 0.71 0.7 0.74 0.74 0.73 0.7 0.72 0.7

CBS-W 0.67 0.64 0.65 0.61 0.69 0.66 0.69 0.64 0.7 0.63 0.7 0.66

CBS-C 0.65 0.63 0.59 0.58 0.64 0.62 0.65 0.62 0.63 0.59 0.65 0.62

HDSHyp-W 0.89 0.88 0.75 0.73 0.69 0.66 0.82 0.84 0.73 0.7 0.7 0.66

HDSSimp-W 0.59 0.53 0.6 0.54 0.69 0.66 0.63 0.55 0.67 0.57 0.7 0.66

HDSHyp-C 0.88 0.87 0.72 0.71 0.64 0.62 0.8 0.83 0.68 0.67 0.65 0.62

HDSSimp-C 0.49 0.43 0.5 0.47 0.64 0.61 0.54 0.46 0.57 0.51 0.65 0.62

4.3 Results and Discussion

We compare the twelve different AUC scores, described in the prior section, for
the ten methods developed in this paper. Results are reported in Table 3 for
the EQ II and DBLP data. We have three different kinds of scores: CBS (Sec-
tion 3.2), HDS (Section 3.3) and HDD (Section 3.3). Both the CBS-W and
CBS-C scores are only count based and don’t take into account any topological
relationship between groups. On the other hand, the HDS and HDD methods
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take into account topology by exchanging information locally and globally, re-
spectively. One of our main hypotheses is that topological structure affects the
group recurrence behavior. We are also unaware of any methods for small group
recurrence and therefore chose CBS-W and CBS-C scores as our baseline.
Note, as described in Section 3.1, all the three genre of methods can be either
count based (referred using suffix -C), or cohesion metric based (denoted by
suffix -W). The count based variants do not take into account the cardinality
of the (sub)groups whereas the cohesion metrics are cardinality based.

Effect of Topology: We observe from Table 3 (the best scores are high-
lighted in bold) that the Hasse diagram-based methods consistently outperform
the count-based methods. This supports our hypothesis that Hasse diagram-
based methods, which take into account topology, indeed, are more informative
about the group recurrence process.

We also compare the methods against four criteria: (a) How do the prediction
methods fare for recurring subgroups as compared to recurring groups?; (b) How
well do the methods predict at dimensions of dyadic edges and above, i.e., the -(v)
cases, compared with how well they predict at dimensions of triadic groups and
above, i.e., the -(v+e) cases?; (c) How well do the methods predict the “Exact”
occurrences versus the “New Vertices” occurrences?; and (d) How do the count-
based “-C” methods compare with the cohesion-based “-W” methods?

We observe that in order to predict recurring subgroups, HDDHyp-W out-
performs all other methods whether the subgroup was an “exact” occurrence
or a “new vertices” occurrence in testing. This suggests that exchange of infor-
mation from the groups observed in the past to the groups not observed in the
past via the Hasse diagram topology and the global-based label diffusion pro-
cess is more crucial for influencing the appearance of subgroups not observed in
the past. In fact, the poor accuracy of the HDDSimp methods indicates that
weights placed on (possibly unobserved) subgroups of observed groups used as
prior information cause bias and hurt the predictive power of the model. Given
that HDDHyp-W is initialized using the cohesion weights in (4), the normal-
ization of counts only on the prior observed group occurrences in the diagram
is important for recurring subgroup prediction. Moreover, the performance of
predicting triangles or higher order groups (RS(v+e)) is higher for the EQ II
data and comparable for the DBLP data to that of predicting dyadic edges or
higher (RS(v)) across all HDD methods, implying the important role played by
the Hasse diagram structure for higher order group prediction.

On the other hand for recurring group prediction the count-based methods
HDDHyp-C and HDDSimp-C performed best, suggesting that the likelihood
of recurrence of already-observed groups is determined more by the simple counts
of past concurrences. The count-based HDS methods also give results compa-
rable with that of the HDD methods. This implies that even the local spread
of count information is sufficient for recurring group predictions. These -Simp-
based methods using (1), which take into account the subgroup counts of the
groups that occurred in training, provide good results, suggesting that the un-
observed subgroups have an important influence on the potential of groups to
re-occur.
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Finally, we note that across both the datasets and across all the twelve ex-
periments, the HDD methods generally perform better than or as good as HDS
methods. Further results and details shall be made available in a future technical
report.

5 Conclusions
We consider the problem of predicting small group evolution and focus on the
sub-problem on group and subgroup recurrence. We highlight two important
group recurrence processes and capture them using weighted simplicial com-
plexes. We use a Hasse diagram corresponding to the simplicial complex as a
graph whose nodes correspond to subgroups in the complex. We then build semi-
supervised models on top of this graph for group recurrence prediction. We have
shown that frequent patterns like small groups can be considered as topologi-
cal entities, with relationships between them guided by higher order topological
properties.
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