
Modeling Temporal effects of Group Dynamics on
user preferences using Hypergraphs

Ankit Sharma, Krishna S. Muppalla, Jaideep Srivastava
Department of CS&E, University of Minnesota, Minneapolis 55455

I. ABSTRACT

Personalized recommendations based upon previous be-
havioral and personal data of a user is an increasingly im-
portant problem. Specially, with internet becoming ubiquitous
in tandem with ongoing enhancements in human computer
interaction, the amount of fine grained user data like social
interaction, group interaction, user-item/ user-user transaction
data, etc. is ever increasing and therefore, posing new chal-
lenges in modelling user preferences. This work aims to model
evolving user behavior using Hypergraphs which have been
proposed as an effective tool to capture such complex higher
order user relationships with multiple entities (like users, items,
etc) involved. Most of the current hypergraph based models
lack the temporal dimension which is an essentially important
aspect, specially when modeling user preferences which are
inherently variable over time. We are proposing a hyper-
graph label propagation approach with temporal regularization
framework which is shown to be easily adaptable to capture
various temporal constraints through penalization. Given a
user’s previous transactions and social interaction history the
model ranks the various items for a queried user.

II. INTRODUCTION

The movie-rating network consists of different kind of
nodes like user nodes and movie nodes. Traditional recom-
mendation algorithms, such as Collaborative Filtering only
consider the user-item rating matrix and fail to take advantage
of other kinds of social media information. Recently, there
has been considerable interest in making use of social media
information to enhance the recommendation performance. For
example, some previous works employed ordinary graphs to
model tagging data for recommendation problems [7]. Users
can participate in different activities like watching the movie,
rating the movie and tagging the movie. The ordinary graph
model fails to capture the user-tagging relations. We model
the relationships as hyper-edges (eg: user-user, user-movie,
user-movie-tag, etc) of a hyper-graph, which is tri-modal i.e.,
contain three types of vertices’s: users, movies and tags.
Therefore, if we splits the past relationship and transaction data
available into smaller time-steps then we arrive at snapshot
of this hyper-graph in various time instances in past. Our
aim is to comprehend users preference for the various movies
(items). We are proposing a hypergraph label propagation
approach with temporal regularization and simultaneously cap-
turing various tagging based relationship constraints through
penalization. This approach reveals the ranks for the various
item nodes for a particular queried user.

III. RELATED WORK

Our work is also related to graph-based ranking and
hypergraph learning [6, 8, 9, 13]. Zhou et al. propose a
manifold ranking algorithm which ranks data objects with
respect to the intrinsic geometrical structure in the data [13].
They first construct a weighted graph and set the query point,
then let all data points spread their ranking scores to their
nearby neighbors via the weighted graph. The spread process
is repeated until a global stable state is achieved. Agarwal
[8] proposes to model the data objects as a weighted graph,
and incorporate this graph structure into the ranking function
as a regularizer. In this way, the obtained ranking function
varies smoothly over the graph. Zhou et al. develop a general
framework which is applicable to classification, clustering and
embedding on hypergraph data [6]. These studies only focus
on classification, clustering and embedding on hypergraphs.

IV. PROBLEM

A. Problem Definition

The task we are trying to solve is providing movie rec-
ommendations to a user based on the movies he has watched
previously, the tags and the ratings he has assigned to those
movies and the users he interacted since he has watched a
particular movie.

B. Problem Statement

Let G(V,E,w) denote a hypergraph where V is the set of
vertices, E is the set of hyperedges, and w is a weight function.
Each hyperedge e in E is a subset of V . We denote the
hypergraph for the snapshot t = tk using the incidence matrix
H(tk) = {E(tk), V (tk)}. E(tk) is the set of hyper-edges in
the hyper-graph during the time t = tk over the vertices’s
V (tk). Let fi(tk) denote the rank of a vertex vi (irrespective
of item or user vertex) and yi is the initial label assigned
of a vertex vi. We therefore have a vector of initial labels
y which we refer to as the query vector. (Note that we shall
only initialize either a particular node or a node and its friends
or a very small subset of nodes with respect to whom we want
to find out the ranking of item nodes). Our aim is to find out
the ranking vector f = {f1, f2, ..., fm} where each fk being the
rank of all the vertices’s in snapshot tk of other nodes with
respect to this initial label vector. Out of this complete rank
vector the rank of the item nodes shall give the likeliness of an
item being bought in future by a user (described by the query
vector).



V. METHODOLOGY

A. Regularization Framework

We shall now present the regularization framework that we
use to propagate the initial label vector to come up with the
rankings. We are trying to solve the problem on very similar
lines to that of [1] while extending it to temporal dynamic
setting and enco-operating domain level constraints as well.
The cost function is shown in the equation (1) where m is the
number of snapshots we took of the data over time, δ(e, tk) is
the degree of hyperedge e, w(e, tk) is the weight of hyperedge
e(tk) and d(vi, tk) is the degree of a vertex vi(tk) which is
nothing but the number of edges of which this vertex is a part
of. These values of weights are quiet domain dependent and
degree of a hyperedge is the number of other hyperedges it is
overlapping with.

Q(f) =
m∑

k=1

1

2

n∑
i,j=1

∑
e∈E

1

δ(e, tk)

∑
{vi(tk),vj(tk)}⊆w(e,tk)

∥∥∥∥∥ fi(ti)√
d(vi, tk)

− fj(ti)√
d(vj , tk)

∥∥∥∥∥
2


+

m∑
k=1

(
γ
∑

i∈Users

‖fi(tk)− fi(tk−1)− α‖2
)

(1)

The above cost function contains three terms of which
the second term is the penalization if the predicted label
is not same as the initial labels assigned. The first terms
comes from the hypergraph label propagation literature [6] and
has been recurrently used across literature in several papers
[1][2]. The second term basically checks that the nodes whose
labels or ranks we know should indeed have the same ranks
and the first term makes sure that two vertices that share
many hyperedges (like many people watching the same item
hyperedge or are being a part of same group hyperedge)
are likely to have similar rankings. Note that the outer most
summation (over all snapshots) in both the first and the second
terms makes sure that this regularization is enforced in each
snapshot. Another thing to observe is that the first and the
second terms enforce regularization only within the hypergraph
snapshot of particular interval. Therefore, we add a third term
which connects the constraints between different snapshots.
We consider the same user’s vertex in different snapshots as
its avatars. Previous work in user preference modeling [4]
suggests that the user’s current preference (avatar) is more
similar to his recent preferences (avatars) as compared to those
much farther back in time. We incorporate this by decaying
the avatar’s label as compared to that in previous snapshots
by a constant factor α. Our model currently learns this factor
and it is same across all the users.

Our aim is therefore to minimize our cost function Q(f).
Note that f = {f1, f2, ..., fm} where each fk being the rank of
all the vertices’s in snapshot tk. Therefore the variables are f
and α. The optimal ranking is given by the ranking of the item
vertices’s in the final or current snapshot (tm). Writing in a
more compact format the cost function for each ftk becomes:

Q(f) =

m∑
k=1

Q(ftk) (2)

where,

Q(ftk) = fTtk(I− (Dv)
−1/2
tk

HtkWtk(De)−1tk
HT

tk
(Dv)

−1/2
tk

)ftk

+µ(ftk − ytk)T (ftk − ytk)

+γ(ftk − ftk−1
− αjuser)T (ftk − ftk−1

− αjuser),
(3)

represents the cost for the snapshot at t = tk. Note that
at t = 1 the third term shall be zero as there is no previous
snapshot left to put this constrain against. juser is a vector
indicating which are vertices’s are user vertices’s and which
are item or non-user i.e. juser(i) = 1 if vi is a user vertex and
the total number of vertices’s is the length of this vector. Given
that we have to minimize over a vector f which is naturally
divided into m subsets for each of the snapshots and a scaler α,
making alternate optimization [5] a natural choice. (Alternate
optimization has been used in case of two variables in context
of hypergraph label propagation by [3]) It can be easily shown
that Q(ftk) is convex (quadratic) with respect to ftk and also
Q(f) convex (quadratic) with respect to α. Taking gradient
with respect to ftk ,

dQ

dftk
= (I−∆

′

tk
)ftk + µ(ftk − ytk)

+γ(ftk − ftk−1
− αjuser) = 0

(4)

where

∆
′

tk
= (Dv)

−1/2
tk

HtkWtk(De)−1tk
HT

tk
(Dv)tk

−1/2 (5)

The solution to the above is a solution to the linear
equation,

ftk = ((1 + µ+ γ)I−∆
′

tk
)−1(µytk + γytk−1

+ γαjuser)
(6)

with the recursive iteration for inverse calculation being:

ftk = (∆
′

tk
− (µ+ γ)I)ftk + µytk + γytk−1

+ γαjuser (7)

Similarly, gradient with respect to α is :

dQ

dα
= −γ

m∑
k=2

(ftk − ftk−1
− αjuser) = 0, (8)

which results in:

α =
1

(m− 1)

∑m
k=2(ftk − ftk−1

)

juser
, (9)



Algorithm 1 HYPER-TEMPORAL-RECOM (Ht1 , ...Htm ,
Wt1 , ...Wtm , juser, ytk )

1: Calculate (Dv)tk and (De)tk .
2: z = 0, initialize ftk randomly, α = 1
3: repeat
4: z = z + 1
5: for k ∈ {1, 2, ...,m} do
6: Find ftk using the equation (6) indirectly using meth-

ods like Jacobi iterations for inverse calculation using
the equation (7). The values for ftp for p 6= k should
be taken from the (z-1) iteration.

7: end for
8: Find α using the equation (9) and the values for ftp for

p 6= k should be taken from the (z − 1)th iteration.
9: Calculate the current cost qz using the equation (3).

10: until (qz − qz−1) > ε
11: return ftm

B. Algorithm

The algorithm for the proposed optimization is shown
below. For every k we have ytk initialized to 1 at the
index of the current query user and zero otherwise (we have
other initialization schemes described in the experimentation
section).

VI. EXPERIMENTATION

A. Dataset

The data used for the experiments is obtained from Grou-
pLens. It is an extension of MovieLens10M dataset, published
by GroupLens research group. This dataset describes 5-star
rating and free-text tagging activity from MovieLens, a movie
recommendation service. We consider the data from 2006-
2008. It has 2106 users, 9566 movies and 9039 tags. The data
is then divided into 12 snapshots with 3 months of data in
each snapshot.

B. Comparison and Scenarios

We compare our temporal hypergraph model with non-
temporal or static hypergraph model. The static hypergraph
model collapses all the data in different snapshots into a single
hypergraph and we therefore, also do not consider any avatars
in this case. Therefore, this model is same as that of Bu et al.
[1].

• Scenario 1: Initialization of the current time frame
avatar.

• Scenario 2: Initialization of all timeframe avatars.

• Scenario 3: Initialization of current time frame avatar
and movies he watched in current timeframe.

• Scenario 4: Initialization of all avatars and all movies
they have watched.

C. Performance Metric

The performance in case of all the above-mentioned sce-
narios is evaluated based on the hit-rate. Hit-rate is a measure

TABLE I: Hit Rates of Temporal vs Non-Temporal

N Scenario Temporal Hit Rate Non-Temporal Hit Rate
5 1 13 0

10 1 36 17
20 1 72 19
50 1 232 79
100 1 425 218
5 2 7 0

10 2 8 17
20 2 30 19
50 2 87 79
100 2 137 218
5 3 8 1

10 3 26 13
20 3 67 34
50 3 226 121
100 3 425 338
5 4 36 1

10 4 77 13
20 4 139 34
50 4 350 121
100 4 610 338

of how often a list of recommendations contains content that
the user is actually interested in. In this case it is number of
movies the algorithm correctly recommended to the user in
that in top-N recommendations..

VII. RESULTS

A. Results

Hit-rates for all the scenarios are as shown in the table.
Here N is the top N movies being recommended by the
algorithm and the label flag indicates the scenario being
considered.

B. Discussion

From the hit-rates obtained we can see that the recommen-
dation obtained considering the temporal aspect are better in
almost all the scenarios and across various N . This supports
our hypothesis that over time user interacts with other users
and his preference therefore changes over time as per his newer
social interactions. Our temporal model therefore, successfully
captures the temporal nature of both social interactions and
their effect over evolving avatars of an individual. In the
non-temporal model the time dimension is completely missing
resulting in poor accuracy. The user in snapshot a is different
from the user in snapshot b. Whereas, in case of non-temporal
the user from start to beginning is the same.

VIII. FUTURE WORK

In this work we have restricted ourselves to a simple
linear decay of user preferences however, it fairly possible
that different users have different possible rates of preference
change. In future we can work on learning different parameter
for individual users. We also look forward to test our model
for other datasets with different kinds of social interactions
available. As a next step, it would also be interesting to
compare other models which although model user preferences
temporally but not consider the social interactions, without
temporal social model.



IX. ACKNOWLEDGEMENT

This work has been supported in part by the NSF Award
IIS-1422802.

REFERENCES

[1] Bu, Jiajun and Tan, Shulong and Chen, Chun and Wang, Can and Wu,
Hao and Zhang, Lijun and He, Xiaofei, Music recommendation by unified
hypergraph: combining social media information and music content. In
Proceedings of the international conference on Multimedia (MM ’10).
ACM, New York, NY, USA, 391-400.

[2] TaeHyun Hwang, Ze Tian, Jean-Pierre Kocher, and Rui Kuang. Learning
on Weighted Hypergraphs to Integrate Protein Interactions and Gene
Expressions for Cancer Outcome Prediction,Proc. of Eighth IEEE Inter-
national Conference on Data Mining (ICDM), pages 293-302, 2008.

[3] Ze Tian, TaeHyun Hwang and Rui Kuang. A Hypergraph-based Learning
Algorithm for Classifying Gene Expression and ArrayCGH Data with
Prior Knowledge, Bioinformatics, Vol. 25, No. 21, pages: 2831-2838,
2009.

[4] Koren, Yehuda. Collaborative filtering with temporal dynamics. Commu-
nications of the ACM 53.4 (2010): 89-97.

[5] Bezdek, James C., and Richard J. Hathaway. Some notes on alternating
optimization. Advances in Soft ComputingAFSS 2002. Springer Berlin
Heidelberg, 2002. 288-300.

[6] Zhou, Dengyong, Jiayuan Huang, and Bernhard Schlkopf. Learning with
hypergraphs: Clustering, classification, and embedding. Advances in
Neural Information Processing Systems. 2006.

[7] I. Konstas, V. Stathopoulos, and J. M. Jose. On social networks and col-
laborative recommendation. In Proc. the 32nd ACM SIGIR Conference
on Research and Development in Information Retrieval, Boston, MA,
2009.

[8] S. Agarwal. Ranking on graph data. In Proc. the 23rd International
Conference on Machine Learning, Pittsburgh, PA, 2006.

[9] S. Agarwal, K. Branson, and S. Belongie. Higher order learning with
graphs. In Proc. the 23rd International Conference on Machine Learning,
Pittsburgh, PA, 2006

[10] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Scholkopf. Rank-
ing on data manifolds. In Advances in Neural Information Processing
Systems 16, Cambridge, MA, 2003.


