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Understanding groups is of prime importance in sociology as well as
psychology. In this research we focus on small groups. We aim to
empirically answer the questions of segregating small groups from
plethora of social groups (macro level analysis) as well as distin-
guishing characteristics among small groups (micro level analysis).
We use temporal hypergraphs as the model to capture the self as-
sembling small groups over time. Various cross-sectional as well
as longitudinal hypergraph metrics are developed to characterize as
well as interpret dynamics of small groups. We observe that small
groups distinctly follow a Log-normal cardinality distribution unlike
other kinds of social groups like interest based groups. Group vari-
ability metrics are developed for studying the inter-groups interac-
tions. Cross-sectionally, these metrics result in a good Weibull type
fit. Over time the group variability of research groups increase and
the members of the group increasingly start participating in exter-
nal groups, but patent groups are more covert with a low group
variability in general. Task oriented online gaming groups tend to
self assemble into good chemistry groups less distracted by exter-
nal participation. To further capture the average individual attention,
a group level attention metric is developed. This metrics follows a
log-normal cross-sectionally across the datasets. However, tempo-
ral attention metric seems to be decreasing over years in research
teams but increases in task oriented and highly competitive gaming
teams and for that matter is quiet high in (covert type) patent teams,
across years. Interestingly, these metrics tend to successfully track
fluctuations in Enron dataset during the time of scandal. Overall in
this research we leverage hypergraph, which naturally model self-
assembling small groups, to develop interesting novel metrics, to
study small groups at totally different level of granularity which nat-
urally takes into account the network effects.

hypergraph | small groups | network science | social science | social
networks

Social groups have been studied extensively across social
sciences (? ) and have found extensive real life applica-

tions (? ). Internet generated online space has allowed for
new types of group interactions more than ever before. These
new interactions provide minute by minute traces of group
interaction data (? ) making their study possible in a manner
which is much more fine grained than ever before. Groups
have been defined in several ways (? ) in social sciences. More
often the primary dimension to categorize groups is according
to their sizes. Small groups can typically contain 3 to 20
members (? ) whereas medium sized guilds have less than
200 members (? ). Finally, their are larger arbitrary size
communities which can have hundreds or even thousands of
members as part of them (? ). Social groups co-exist within
the social network between the social actors. This network
of actors influences the group dynamics which in-turn affects
the network evolution. Large part of literature within network
science is dedicated to finding groups and its evolution (? ).
However, their research lacks any proper definition of groups
and resulting in arbitrary sizes ranging all the way from small

groups to huge communities (? ). On contrary our research
focuses on well defined small groups and we propose the notion
of network of groups. Small groups occur naturally or are
formed as teams to jointly carry out tasks. We believe that
small group phenomena is highly distinct from that of larger
guilds or communities and therefore, are governed by different
set of theories. The group structure is already given in form of
the group interaction data. We focus more on building models
that capture the network of groups notion and studying the
group dynamics over this network. We propose the hypergraph
model as network of groups and build several metrics to infer
interesting characteristic group behavior.

1. Model

Consider the scenario where we have a set of n individuals or
social actors: V = {v1, v2, ..., vn}. These actors self assemble
themselves into groups to perform tasks at hand or gather for
an event. A group therefore, is a subset of all the actors. We
have a collection of m such groups observed in past, denoted
by G = {g1, g2, ..., gm} where gi ⊆ V represents the ith group.
Cardinality ci = |gi| of a group is the number of actors part of
it. Membership of a group can change over time. An actor can
leave or join a group, resulting in changes in group membership.
When two actors work or gather together in the same group
they develop social tie. These social ties therefore, become
the edges in the social network of actors (NOA). NOA is a
graph, Na = (V, E) where E = {e1, .., ew} are the dyadic edges
defined over vertex set V . Moreover, the actors that are the
part of multiple groups act as ties between groups resulting
in a network of groups (NOG). NOG is a hypergraph (? )
represented as a set Ng = (V, G) with G as the hyperedges over
the vertex set V . Given a past history of groups we therefore,
can construct both the NOA and NOG graph theoretic models
for this data. Most of the past research has looked at NOA
model, however, in this research we shall stress on the NOG
model and build adequate metrics to capture group behavior
of interest.
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Notice that Ng = (V, G) is the complete set of groups
(hyperedges) and actors (vertices), observed over a period of
time [0, T ]. However, at each time instance t ∈ [0, T ], only a
subset of the groups, Gt ⊂ G, (and the corresponding actors
V t ⊂ V ), might only be active. We refer to Gt as the snapshot
(of NOG or hypergraph).

We also categorize groups into core groups which do not con-
tain any subgroups within them not part of any other groups
and all other groups which might contain subgroups within
them are the expanded group. Furthermore, a core group along
with all the expanded groups it is part of, constitute a family.

2. Results and Discussion

Our research is conducted using ten different datasets. These
data sets are all social group oriented however, they vary in
the size, type as well as intensity of social interactions. Refer
Materials and Methods for dataset details. In the following
sections we will describe results for four different kinds of
metrics built using the hypergraph model described in the
previous section. In next section we initiate with a discussion
on the macro-level question of: How to distinguish small group
data from general social groups? In the remaining sections
we focus only on the small group datasets. The stress would
be on comparing different small group data sets, as to what
characteristics are variable or invariable. Therefore, resulting
in various interesting conclusion on behavior of within small
groups.

A. Distinguishing features of Small Groups. The ten datasets
that we considered in our research fall in two major genre. In
one genre we have groups that are set of individuals sharing
common interests and the second type consists of groups
which are set of individuals that interact together as a team
to perform various tasks. Our aim is to develop metrics that
can very well distinguish the different genre empirically. For
this we consider, the first metric of Group Size (Ψ0) : the
number of actors or members part of a group. Figure 1 show
the Probability Mass Functions for Group Size. We observe
that all these datasets have a heavy tail (cloud of point at tail).
Visually, we can further observe that there are two distinct
categories of datasets. Interest group datasets, which include
Friendster (FS), LiveJournal (LJ) and Youtube (YT), have
body which is pretty much a straight line. Other datasets,
which are more team oriented, have a body that is not a
straight line. In fact we try to fit log-normal distribution to
all the ten datasets, and observe that log-normal in general
fits the team oriented small group datasets.

Heavy tail cloud in PDF causes difficulty in fitting, there-
fore, we use the Complimentary Cumulative Distribution Func-
tion (C-CDF) curve for fitting our hypothesized distributions.
Figure 2 show the C-CDF for group sizes. We can observe in
Figure 2 that the body is very well fitted by the log-normal
distribution whereas we find (by visual analysis) that a large
portion of the tail is well fitted by power-law (i.e. a line
shown as dotted black line). Typically this transition from the
log-normal to power-law occurs at different points for various
datasets. Power-law fit suggests the prominence of preferen-
tial attachment in the larger size groups in tail. Therefore, a
large group attracts more individuals to become part of it in
proportion to its current size. Rich get richer phenomena is
at play in large size groups.

Fig. 1. Log-Log plot for Probaility Mass Function (PDF) for the group size or cardinality.
X-axis is the group size and Y-axis is the P(X=x) i.e. probability of finding size equal
to x. Body of the curve is well fitted by a log-normal ditribution.
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Fig. 2. Log-Log plot for Complementary Cumulative Distribution Function (C-CDF) or
Survival Function for the group size or cardinality. X-axis is the group size and Y-axis
is the P(X>x) i.e. probability of finding size greater than x. Body of the curve is well
fitted by a log-normal ditribution while a major portion of the tail is power-law.

B. Characteristic Group Sizes of Small Groups. Among the
various kinds of small group datasets, group size can further
help us distinguish their nature. We observe that the peak
of the lognormal fit in Figure 1 occurs at different cardinal-
ities. For example for movies in IMDB data a team of ten
individuals seems quiet prominent where as in research teams
in DBLP or Pubmed sizes between two to four seems most
popular statistically. One can relate this most prominent size
(peak in the log-normal fit), as a reflection of the kind of group
interaction involved. Movie making is complex task involving
various individuals of varying skills therefore, ten people seems
to be some kind of an ideal size for a successful movie making.
On the contrary, research publication tasks requires intensive
interaction among like minded or skilled individuals. Possibly,
intense interaction is more easily done in smaller teams, there-
fore, making small size teams more characteristic in research
tasks.

C. Characterizing Inter-Group Interactions. In the previous
section we characterized an individual group specific attribute,
namely the group size. However, the real-world groups are in
constant interaction via the common members. In this section
we shall focus on understanding the interaction of a group
(hyperedge) with it’s neighboring groups (overlapping hyper-
edges within NOG). While capturing these interactions we aim
to understand the repercussions of these interactions on the
individual group’s behavior. We investigate the inter-group
interactions using three different metrics.

The first metric is that of Group Variability which captures
the number of incident hyperedges to a given group’s hyperedge
within the NOG. In order to remove the bias of the larger
groups, we further normalize by dividing it by the given group’s
size. More formally let us define the set Gg associated with
the given group hyperedge g such that Gg = {e|e ∩ g 6= ∅, e ⊂
G, e 6= g} i.e. set of all the incident hyperedges. We can then
define the metric of Group Variability (Ψ1) as follows:

Ψ1(g) = |Gg|
|g| [1]

where g is the given group hyperedge.
As can be observed from the Figure 3 that at group level

this metrics is very well fitted by weibull distribution.
However, the group variability metric does not take into

account the extent of overlap between the given group with its
incident group hyperedges. To accommodate that we define
another metric as follows:

Ψ2(g) =

∑
e∈Gg

|e ∩ g|
|Gg||g|

[2]

As this metric captures the bridging capability of the given
group we call it Overlap-based Hyperedge Bridging Capital
(HBC-Overlap) (Ψ2). It is simply the normalized sum of
fraction overlaps of the given group with other groups incident
on it. Notice that 1

|g| ≤ Ψ2(g) ≤ 1. Figure 4 show the C-
CDF curves for HBC-Overlap metric. At the group level over
all log-normal is a good fit rather than weibull. But both
distributions fails to capture the tail.

We further more define another metric that captures the
over all attention span of the group members towards the
given group. For this we start by defining the degree of the
vertex as the number of groups a vertex is a part of. Formally
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Fig. 3. Log-Log plot for Complementary Cumulative Distribution Function (C-CDF) or
Survival Function for the group variability. X-axis is the group variability and Y-axis is
the P(X>x) i.e. probability of finding group variability greater than x. The complete
curve is very well fitted by a weibull ditribution.

Fig. 4. Log-Log plot for Complementary Cumulative Distribution Function (C-CDF)
or Survival Function for the group variablity as Overlap based Hyperedge Bridging
Capital (HBC-Overlap). X-axis is the HBC-Overlap group variability and Y-axis is the
P(X>x) i.e. probability of finding group variability greater than x. The whole curve is
well fitted by a weibull ditribution. Although the body is better fitted by log-normal but
it does not fit tail. Tail also has a strong power-law.
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as d(v) = |{g|v ⊂ g, g ∈ G}|. Using the degree of a given actor
we define another group level metric as follows:

Ψ3(g) =
∑

v∈g
(1/d(v))
|g| [3]

Numerator is basically the sum of each actor’s fraction
attention (inverse of degree of actor vertex) span towards the
given group. As this metric captures the bridging capability
of the given group through its members external participation,
we call it AttentionSpan-based Hyperedge Bridging Capital
(HBC-AttentionSpan) (Ψ3). Notice that 0 < Ψ3(g) ≤ 1.

HBC-AttentionSpan metric shows a log-normal fit as a
characteristic. Overall Log-normal fits better or very close to
weibull when evaluated using both Root mean squared error
(RSS) as well as KS statistic (KS).

Note that all metrics develped in this section so far quantify
the amount of inter-group, but provides no information with
respect to the diversity among the group members and among
the extent of overlaps. In order to capture these diversities
we develop information entropy based metrics as follows. For
capturing the diversity among the actors for external collabo-
ration, we propose Group Variety (Actor Degree):

Ψ4(g) =
−

∑
v∈g

p(v) ln p(v)
ln |g| , p(v) = d(v)∑

v∈g
d(v)

[4]

where p(v) is the fractional degree contribution of the vertex
v towards the group variability of group g. The numerator
is information entropy among the group actors (v ∈ g) with
respect to their p(v). Denominator is the maximum entropy
achievable by a group and acts as a normalizing constant.

D. Temporal Characteristics of Small Groups. In the previous
sections we have observed the groups while ignoring the tempo-
ral information associated with their data. Unlike the interest
groups which are groups by association (one time activity),
small groups are involved in various activities or tasks over
time. Therefore, neglecting the temporal aspect, may result
in only a limited cross-sectional picture which disregards the
dynamics within small groups. We incorporate the temporal
information by studying the metrics developed above over
time (hypergraph snapshots). For this we define the temporal
group metrics (Θi) corresponding to each of the (static) group
metrics (Ψi), as follows:

Θi(g, t) =
∑

g∈Gt Ψi(g)
|Gt| , ∀i ∈ [0, 4] [5]

We start with the group temporal size (Θ0), whose curve
is shown for all the five small group datasets in Figure 7. We
observe that over years the average size of research teams have
increased. This trend is shown in DBLP, Pubmed as well as in
USPatent (where the task of patent is quiet similar to research
tasks). On the contrary the gaming teams in EQ2 show a
slightly decreasing trend in the team sizes. A possible reason
could be that over time of several months the game players
assemble themselves in smaller but more optimal units who
perform favorable in tasks. Email communication task (in
Enron) seems to be indifferent to time and there seems to be
nothing like a favorable number of people to whom an email
should be sent to which the organization should evolve to.

Fig. 5. Log-Log plot for Complementary Cumulative Distribution Function (C-CDF) or
Survival Function for the group variablity as Attention Span based Hyperedge Bridging
Capital (HBC-AttentionSpan). X-axis is the HBC-AttentionSpan group variability and
Y-axis is the P(X>x) i.e. probability of finding group variability greater than x. The
whole curve is well fitted by a log-normal ditribution.
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Fig. 6. Log-Log plot for Complementary Cumulative Distribution Function (C-CDF)
or Survival Function for the group variety for vertex degree. X-axis is the HBC-
AttentionSpan group variability and Y-axis is the P(X>x) i.e. probability of finding
group variability greater than x. The whole curve is well fitted by a log-normal
ditribution.

Fig. 7. Over time plot for Average Group Cardinality per snapshot. X-axis is the time
snapshot t and Y-axis is the Average Group Cardinality (Θ0) at time snapshot t. The
whole curve shows ....

Fig. 8. Over time plot for Average Group Variability per snapshot. X-axis is the time
snapshot t and Y-axis is the Average Group Cardinality (Θ1) at time snapshot t. The
whole curve shows ....

We shall now consider the normalized temporal group vari-
ability (Θ1) its weighted version i.e. temporal HBC-OG (Θ2),
in tandem. As we can observe in Figure 8, for the case of
research teams (DBLP and Pubmed) as well as the Enron’s
email communication groups , the number of other groups on
an average a group’s members are active in increases over the
years. A very important point to notice is that these group
variability value is for a particular time snapshot. Therefore,
it actually reflects the multi-tasking capability of group. For
example in research teams it reflects how many different exter-
nal projects the group members were simultaneously active in
within than snapshot (multi-tasking). It’s interesting to notice
that USPatent although showing an increasing trend but the
values of Θ1 are quiet low. A possible hypothesis that can
be inferred is that task of patent making is somewhat more
covert than the research publication, and groups working on
patent level ideas, are more inert and deliberately avoiding
external participation.

However, simply taking the count of external groups a given
group overlaps with in a given snapshot does not say much
about the extent of this overlap. Specially with the increase
in average size of groups as well as the number of groups (see
Materials and Methods), like that of research teams. For this
we observe the trends in the temporal HBC-OG metric, as
shown in Figure 9. We can clearly observe the dampening
affect on the group variability when weighted with the overlap
degrees. Enron email communication groups show lower as
well as increasingly constant average external participation.
This is even more observed in the case with research teams
like that of DBLP and Pubmed, where the HBC-OG even
shows decreasing trend over the years. This basically tells that
although the average groups sizes have increased over time
but large fractions of group participate externally. The other
extreme could have been when external participation only
happens via single common member. This basically suggests
that over time high performing subgroups are formed which
multi-task in various research projects possibly with various
external members.

Its is interesting to notice that in USPatent data the values
for HBC-OG lower to that of there small group datasets.
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Fig. 9. Over time plot for Average HBC-OG per snapshot. X-axis is the time snapshot
t and Y-axis is the Average Group Cardinality (Θ2) at time snapshot t. The whole
curve shows ....

This suggests that a large fraction of the same group works
with other groups. Therefore, quiet hight overlap between
groups, suggesting low encouragement to bring in new external
collaborators. Which further corroborates that covert nature
of patent groups.

Another thing to observe is that Enron out of all the small
group datasets has the highest HBC-OG values, suggesting
that overlaps between the email groups is not that high, and
actors are participating even individually in various other
email communications. This also reflects that email communi-
cation is also a less intense activity as compared to research
or publishing patents. However, if we observe the Enron at
the end weeks (when the Enron crisis happened), there are
significant fluctuations in both the group variability as well
as HBC-OG. Possibly relating to the change in the communi-
cations pattern between the organization’s member, with the
scandalous groups going covert.

EQ2 dataset has a different story again reflecting on the
distinct nature of the group tasks within online games. The
group variability of these groups was never too high and shows
a decreasing trend. Also the extent of overlap with other
groups is quiet high, suggesting the closed nature of gaming
teams, which are highly selective in whom they play with.
Also over time they self assemble into more inert and good
chemistry groups.

HBC-AS captures the average attention of group members
towards the group and is shown in the Figure 10. Over the
years it seems that researchers are multitasking increasingly
more and working in various groups simultaneously. Therefore,
a decreasing focus in a single group activity. However, the
gaming teams in EQ2 and their members, on contrary, get
increasingly focused over months.

3. Materials and Methods

A. Data Preparation. In this research we have utilized nine
publicly available and one proprietary data. The details of
these datasets are provided in the Table 1. Only five of the
datasets have temporal information available in them. Average
number of active actors and groups across these five temporal

Fig. 10. Over time plot for Average HBC-AS per snapshot. X-axis is the time snapshot
t and Y-axis is the Average Group Cardinality (Θ3) at time snapshot t. The whole
curve shows ....

Fig. 11. Over time plot for Group Entropy (vertex degree) per snapshot. X-axis is the
time snapshot t and Y-axis is the Average Group Entropy (Vertex Degree) (Θ4) at
time snapshot t. The whole curve shows ....

Fig. 12. Over time plot for number of active groups. X-axis is the time snapshot t and
Y-axis is the Number of Active groups at time snapshot t. The whole curve shows ....
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Fig. 13. Over time plot for number of active actors. X-axis is the time snapshot t and
Y-axis is the Number of Active actors at time snapshot t. The whole curve shows ....

datasets are shown in Figure 13 and Figure 12. Except for the
case of EQ2 all other temporal datasets show increasing trend
in both the number of actors as well as groups.
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Table 1. Datasets Details

Dataset
Name

Group
Activity /

Type

Hyper-
edges

Group Vertices Actor
Mean
Group
Size

Mean
Vertex
Degree

Avg. No
Actors
Across

Snapshots

Avg. No
Groups
Across

Snapshots

Avg.
Number of

Active
Snapshots

Pubmed
Research

Publication
8683653 Group of Researches 4274803 Researcher 3.533 7.176 338814 226614 1.3

USPatent
Patent

Publicaiton
1221741 Group of Researches 1330422 Researcher 2.262 2.077 118067 70979 1.3

DBLP
Research

Publication
1180465 Group of Researches 1304358 Researcher 3.175 2.874 227630 119435 1.1

EQ2
Online Game

Task
11240

Group of Game
Players

10933
Game
Player

2.91 2.992 2128 1112 18.9

Enron
Email Com-
munication

3016
Group of Members in

an Email
Communication

184
Member of
Organiza-

tion
3.632 59.527 51 58 3.6

Apache Code Editing 80910
Codes Editing Same

Software Code
3360

Software
Coder

5.08 122.340 - - -

IMDB
Movie

Making
10174 Movie Making Group 95321

Movie
Actors

22.778 2.431 - - -

LiveJournal
Interest
Group

664414
Group of Individuals
Sharing interest in

Journalism
1147948 Individual 10.789 6.244 - - -

Friendster
Interest
Group

1620991
Group of Individuals
Sharing interest in

Blogs
7944949 Individual 14.484 2.955 - - -

Youtube
Interest
Group

16386

Group of Individuals
Sharing interest in
Online YouTube

Videos

52675 Individual 7.885 2.453 - - -
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