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Abstract. Data structured in the form of overlapping or non-overlapping sets are found
in a variety of domains, sometimes explicitly but often subtly. For example, teams, which
are of prime importance in social science studies, are “sets of individuals”; “item sets”
in pattern mining are examples of groups, and for various types of analyses in language
studies a sentence can be considered as a “set or bag of words”. Although building models
and inference algorithms for structured data has been an essential task in the fields of
machine learning and statistics, research on “set-like” data remains less explored. Dyadic
edges in a graph model relationships between pairs of elements. However, for modeling
relationships that involve all members of a set, a hyperedge is a more accurate represen-
tation. In this work, we focus on the problem of embedding hyperedges of a hypergraph
(a network of overlapping sets) to a low dimensional vector space. While introducing the
novel concept of dual tensors, we propose a symmetric tensor-based algebraic model that
captures the hypergraph structure in a principled manner (without losing set-level in-
formation). More importantly, the proposed tensor methods are for general non-uniform
hypergraphs, which has not been studied previously in tensor literature. Our central focus
is to: (a) highlight the connection between hypergraphs (topology) and tensors (algebra)
and (b) provide a comparison between graphs and hypergraphs. Our hypergraph tensor
decomposition method outperforms graph (or graph proxies for hypergraph) based spec-
tral baselines on real-world as well as synthetic datasets. We, therefore, argue that the
proposed methods are more generic methods suitable for hypergraphs (and thus also for
graphs) that preserve accuracy and efficiency.

1 Introduction

In group-structured data, we have multiple entities related by some form of group
relation. Such relationships occur far more frequently in the real world than has
usually been studied [13]. Noticeably in social groups, like collaboration data of sci-
entific or software teams [10]; team interaction logs from massive online multi-player
games [2, 21], such as World of Warcraft; and further, interaction logs from group
communication tools such as Skype and Google Docs, not to mention, e-mail data [18].
There are other fields in which modeling relationships between a collection of entities
is crucial as well, and large group-structured datasets are available. Examples include
Natural Language Processing [5], Biology [15] and e-commerce [12].
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Fig. 1: “Set-like” hypergraph structures from various domains

Hypergraph [6], which is a generalization of graphs, is recognized for naturally
modeling higher-order relationships between overlapping sets of objects [13]. Figure 1
shows example hypergraphs modeling networks of collaborations, sentences, and item-
sets. Within machine learning, algorithms guided by hypergraph structure [24] have
found applications in a variety of domains [19, 23].

Often it is useful to embed nodes of a graph to low dimensional vector space
(by a process referred to as graph embedding) as various predictive tasks concerning
nodes (like node classification) can utilize these embeddings. In this paper, we focus
on learning hypergraph embeddings, which involves not just learning node embeddings
but also hyperedge embeddings for a given hypergraph. However, unlike graphs (see
[7]), learning node embeddings for hypergraph have been less explored. In this paper,
we propose a method that: (1) learns hypergraph embeddings directly, (2) leverages
the hypergraph topology, and (3) does not lose the hyperedge-level joint information.
These learned embeddings can then be employed by a supervised or semi-supervised
algorithm to perform various predictive tasks on nodes as well as hyperedges. Ex-
amples of hyperedge tasks can be, for example, performance prediction of a team
hyperedge (set of individuals) engaged in a collaborative task or classification of in-
dividuals in a cohort for some psychological evaluation by embedding their response
hyperedge (set of “positive” responses).

Most of the past methods learn node embeddings for hypergraphs by extend-
ing traditional graph embedding methods for hypergraph setting [24]. However, as
debated by Agarwal et al. [1], such representations can be learned by constructing
graphs, which are proxies for the hypergraph structure. However, these proxy graphs
for a given hypergraph are not without merit, as observed in some recently theoret-
ical studies [14]. In this work, we show how a k-way tensor can be used to represent
a k-uniform hypergraph [17]; and to capture hypergraphs in a principled manner,
any model should work at the level of tensors and not matrices, which only model
dyadic affinities. This fact was first leveraged in the computer vision community by
Shashua et al. [22], where they perform image segmentation using higher-order affin-
ity tensor decomposition, and pointed to its connection with uniform hypergraphs.
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In this work, we leverage these observations to design node embeddings for general
(non-uniform) hypergraphs based on the joint decomposition of various cardinality
hypergraph tensors. Further, we also introduce the concept of dual tensors for ob-
taining the hyperedge embeddings directly. Lastly, since a central focus of this work
is to compare graphs versus hypergraphs, we compare our method with the graph
(or graph proxies for hypergraph) based spectral baselines. Proposed hypergraph ten-
sor decomposition outperforms baselines on several real-world as well as synthetic
datasets. The main contributions of this work are as follows:

– We propose a general hypergraph tensor decomposition method designed for gen-
eral hypergraphs (containing different cardinality hyperedges), unlike simple uni-
form hypergraph tensor decomposition, which is restricted to fixed cardinality
hyperedges (i.e., uniform hypergraph). We are unaware of any such works that
address this general problem.

– We propose the novel concept of a dual tensor, corresponding to the hypergraph
dual that allows us to get a hyperedge embedding directly.

– We provide an empirical comparison between graphs and general hypergraphs in
a principled manner using the statistical algorithms proposed.

The following is the outline for the rest of the paper. In Section 2, we describe the
problem definition and statement followed by Section 3, where we describe in detail
the methodology. Section 4 describes the datasets, experimental tasks & settings for
the models, followed by the conclusion and appendix.

2 Preliminaries

Consider a scenario where we have a collection of elements. These elements can rep-
resent individual actors in case of social groups or words in sentences or items in
item-sets within a transaction database. In other words a social group or a sentence
or an item-set are sets which contain these elements. Let V = {v1, v2, ..., vn} repre-
sents n elements and we have m different sets defined over these elements, denoted
by G = {g1, g2, ..., gm}, where gi ⊆ V represents the ith set. The cardinality |gi| rep-
resents the number of elements in the set. Also, each set gi ∈ G has an occurrence
number R(gi), which denotes the number of times it has occurred. Such overlapping
or non-overlapping sets can be modeled as a hypergraph [6], where the nodes and
hyperedges, represent the elements and sets, respectively. This hypergraph is repre-
sented as Ng = (V,G) with G as the collection of hyperedges over the nodes V . The
incidence matrix H ∈ {0, 1}|G|×|V | for Ng represents the presence of nodes in different
hyperedges with H(gi, v) = 1 if v ∈ gi else 0. We also define degree d(v) of a vertex
v as the number of hyperedges incident on this vertex i.e. d(v) =

∑
gi∈GH(gi, v).

Problem Statement: Given this setting, our goal is to learn the mapping φ :
G → Rd from hyperedges to feature representations (i.e., embeddings) that can be
used to build predictive models involving sets. Here d is a parameter specifying the
number of dimensions of the embedding vector. Equivalently, φ can be thought of as
a look-up matrix of size |G| × d, where |G| is the total number of sets or hyperedges.
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3 Methodology

In this section, we develop tensor (higher-order matrix) based linear algebraic meth-
ods that learn node as well as hyperedge embedding by taking into account the joint
probability over a hyperedge. The idea behind using tensors is that they retain the
set-level information contained in a hypergraph, unlike the proxy graphs (correspond-
ing to hypergraphs) based techniques (used as baselines in our experiments), which
approximate hyperedge or set-level information with dyadic edge-level information.
As noted before, this idea of tensor-based higher-order affinity retention was first
highlighted in a statistical setting by Shashua et al. [22]. After this, we argue it
has primarily remained unnoticed, more specifically, in the context of hypergraphs.
The following proposition from combinatorial probability puts this argument more
formally.

Proposition 1 Given a set of random variables X1, ...Xc (c ≥ 2), and H(.) as the
information entropy, we have ( [8, p. 34]):

H(X1, ..., Xc) ≤
( 1

c− 1

) ∑
(i,j)⊆2[c]

H(Xi, Xj) (1)

Therefore, the joint probability distribution over c cardinality hyperedges is more
informative (lower entropy) than the total information attained from probability dis-
tributions over each of the

(
c
2

)
dyadic edges.

Although tensors can retain higher order information, most research to date has
focused on uniform hypergraphs using symmetric tensors. We propose an approach
which is principally suited for general hypergraph structured data using higher-order
tensors. For a given hypergraph we can extract a sub-hypergraph that only consists of
the hyperedges with cardinality k. This sub-hypergraph is a k-uniform hypergraph or
k-graph [11]. Corresponding to this k-uniform hypergraph, we can define a kth order
n-dimensional symmetric tensor [17] Akhyp = (ap1,p2,..,pk) ∈ R[k,n] whose elements are
as follows:

ap1,p2,..,pk = R(gi) (2)

where {vp1 , vp2 , ..., vpk} ∈ gi and |gi| = k, ∀i ∈ {1, ...,m}. Note that symmetry here
implies that the value of element ap1,p2,..,pk is invariant under any permutation of its
indices (p1, p2, .., pk). Rest of the elements in the tensor are zeros. We also define the
lexicographically ordered index set for hyperedges:

Pk =
{
p|p = (p1, p2, .., pk) where {vp1 , vp2 , ..., vpk} ∈ gi,
∀gi ∈ G s.t. |gi| = k and p1 < p2 < ... < pk

}
,

(3)

and we have different sets {Pk}∀k ∈ {cmin, .., cmax} (cmin and cmax are the maximum
and the minimum hyperedge cardinality in the given hypergraph). Notice that Pk

contains unique (non-repetitive) indexes as there is only a single p corresponding to
each of the different hyperedges gi ∈ G. Consequently, we have |Pk| = |{gi : |gi| = k}|.
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Similarly, by interchanging the roles of nodes and hyperedges, we can also de-
fine a dual tensor, which corresponds to the hypergraph dual. We consider all the
hyperedges in the hypergraph dual that are of cardinality k. These correspond to
all the vertices in the original hypergraph, which have a degree k, i.e., they are part
of exactly k hyperedges in the original hypergraph. Corresponding to this k-uniform
hypergraph dual, we can define a kth order m-dimensional symmetric dual tensor
Akdual = (aq1,q2,..,qk) ∈ R[k,m] whose elements are initialized as follows:

aq1,q2,..,qk = 1 (4)

where {gq1 , gq2 , ..., gqk} 3 vj and d(vj) = k, ∀j ∈ {1, ..., n}. Note that this tensor is
also symmetric, and rest of the elements in the tensor are zeros. Again, we define
the lexicographically ordered index set for dual hyperedges (vertices in the original
hypergraph):

Qk =
{
q|q = (q1, q2, .., qk) where vj ∈ {gq1 , gq2 , ..., gqk},
∀vj ∈ V s.t. |d(vj)| = k and q1 < q2 < ... < qk

}
,

(5)

and we have different sets {Qk}∀k ∈ {dmin, .., dmax} (dmin and dmax are the maximum
and the minimum vertex degree in the original hypergraph). Again, notice that Qk

contains unique (non-repetitive) indexes as there is only a single q corresponding to
each of the different dual hyperedge (vertex in the original hypergraph) i.e. vi ∈ V .
Consequently, we have |Qk| = |{vi : d(vi) = k}|.

To realize our aim of learning node or hyperedge embeddings we perform Symmet-
ric Tensor Decomposition [9], in a manner similar to [16], but jointly across different
cardinality hypergraph tensors (for node embeddings) or dual tensors (for hyperedge
embeddings). Specifically, for the hyperedge embeddings we consider the following
optimization formulation:

f(λ,Z) =

α2∑
k=α1

∥∥∥Akdual −Mk
∥∥∥2 =

α2∑
k=α1

k!

(∑
q∈Qk

(
akq −Mk

q

)2)
(6)

where,

Mk =

d∑
r=1

λr(zr ⊗ zr ⊗ ...⊗ zr︸ ︷︷ ︸
k times

) ≡
d∑
r=1

λrz
⊗k
r (7)

with ⊗ is the Kronecker product (generalized outer product, ref. [3]), zr ∈ Rm,
λr ∈ R, Z ∈ Rm×d with Z(:, r) = zr and akq is the aq1,q2,..,qk entry of Akdual. Given

the dual tensors Akdual,∀k ∈ {α1, .., α2} (α1 and α2 are the minimum and maximum
cardinalities considered for the dual hyperedges), Equation 6 aims to learn symmetric
decomposition Mk with Z as the matrix containing d-dimensional embeddings for
the m hyperedges. Notice that the embeddings in Z are shared across the different
order (k) decompositions Mk. Furthermore, although there are k! entries for each k
cardinality hyperedge in the dual tensor Akdual, however, the summation in Equation 6



6 Sharma and Srivastava

is performed over only the unique set of indexes in Qk. This helps us escape the
actual construction of the complete dual tensors (Akdual) which otherwise may result
in exponential space explosion. This idea of using only unique index sets (Qk) has
been leveraged by both Kolda et. al. [4, 16] as well as by [22] in form of semi-norms.

We highlight that (z⊗kr )q = zq1rzq2r · · · zqkr with zqpr = Z(qp, r) ∈ R. Also let:

δq =
(
akq −Mk

q

)
=
(
akq −

d∑
r=1

λr(z
⊗k
r )q

)
(8)

Then the gradients for Equation 6 are given by:

∂f(λ,Z)

∂λr
= −2

α2∑
k=α1

k!

∑
q∈Qk

δq(z⊗kr )q (9)

∂f(λ,Z)

∂zjr
= −2

α2∑
k=α1

k!λr

∑
q∈Qk

δq (zq1r · · · zqs−1rzqs+1r · · · zqkr) , (10)

where, j = qs ∈ {q1, ··, qk}. Furthermore, following [16] we add the following
penalty to address the scaling ambiguity by enforcing the following penalty and gra-
dient:

pγ(Z) = γ

d∑
r=1

(zr
ᵀzr − 1)2 ,

∂pγ
∂zr

= 4γ(zr
ᵀzr − 1)zr (11)

Another important issue that requires attention is that the optimization func-
tion f(λ,Z) only considers dual hyperedges of cardinalities within {α1, .., α2}. As
we will discuss in section 4, due to scalability reasons most likely {α1, .., α2} ⊂
{cmin, ..., cmax}. Given this setting, it is, therefore, possible that some hyperedges
(in the original hypergraph) might not contain any vertex, which has a degree in the
range {α1, .., α2}. Cold start issues, thus, arise for such hyperedges and to remedy
that we leverage the auxiliary information in the form of the hypergraph structure.
We, therefore, introduce the following penalty and gradient:

pη(Z) = η

d∑
r=1

zᵀrLdualzr ,
∂pη
∂zr

= 2ηLdualzr (12)

where Ldual is the dual hypergraph laplacian (see detail in Appendix A). This topol-
ogy smoothing constraint allows the diffusion of latent embeddings from the not cold-
start vertices to nearby cold-start vertices, for the later to achieve meaningful non-
zero embeddings. Notice that the above laplacian contains the entire hypergraph dual
structure, therefore, allowing information exchange (1) across different cardinality hy-
peredges and (2) also between hyperedges that are not suffering from a cold start. It
would be interesting to develop other laplacians that (a) only affect the embeddings of
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the cold-start hyperedges, (b) only allow hyperedges of the same cardinality to affect
each other’s embeddings and (c) employ hasse diagram based laplacian [20] which
explicitly models the cardinality hierarchy.

Algorithm 1 HTD (d,m, α1, α2, γ, η,A
k
dual∀k ∈ {α1, .., α2},Ldual)

1: randomly initialize Z ∈ Rm×d and λ ∈ Rd
2: repeat
3: for r = 1 to d do
4: Update λr using Equation 9
5: for j = 1 to m do
6: Update zjr using Equation 10
7: end for
8: Update zr using Equation 11
9: Update zr using Equation 12

10: end for
11: until fit criteria achieved or max. # of iterations exceeded
12: return Z

Putting it all together, the complete optimization objective function is:

ftot(λ,Z) = f(λ,Z) + pγ(Z) + pη(Z) (13)

where the choice of γ is the weight of the penalty on the norm of the columns of Z
and the choice of η determines the penalty on the extent of smoothness (similarity)
between the embeddings of hyperedges within neighborhood of each other. We call
the algorithm that optimizes the above objective (Equation 13) as Hypergraph-
Tensor-Decomposition (HTD) (Algorithm 1).

Notice that till now, we have described the process of learning hyperedge embed-
dings. The same process can also be used for obtaining vertex embedding by calling
HTD (d, n, β1, β2, γ, η,A

k
hyp∀k ∈ {β1, .., β2},Lhyp). Parameters β1, β2 are the limits

for the hyperedge cardinalities considered in Equation 6 and Lhyp is the hypergraph
laplacian (see Appendix A). We shall jointly refer to the embeddings achieved for
nodes and hyperedges via the above tensor decomposition techniques as t2v. Lastly,
we would like to highlight that the tensors that we have employed are super-symmetric
and hence able to capture distribution over sets rather than sequences. But in general,
we can employ a k-way tensor, which is not symmetric to even capture sequence. In
this sense, tensors are more general purpose.

4 Experiments

4.1 Dataset Description

In this paper, we consider both real-world as well as synthetic datasets. For the
former, we make use of five popular real-world datasets from the UCI Machine Learn-
ing Repository (http://archive.ics.uci.edu/ml). The five selected datasets have data

http://archive.ics.uci.edu/ml
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points whose feature vectors contain mostly boolean-valued features. (From each of
the datasets, we removed the very few non-boolean valued features.) We then consider
each data point (sample) as a hyperedge with features as vertices. All the features
(vertices) which have value one for a given sample (hyperedge) are considered vertices
of this sample hyperedge. In short, we treat the data matrix (sample-feature mapping)
as the hypergraph incidence matrix (hyperedge-vertex mapping). Below we describe
the five datasets:

Data Hyperedges Vertices Max. Avg. Max. Avg.
(m) (n) Cardinality Cardinality Vertex Degree Vertex Degree

zoo 101 15 10 6.53 83 44
voter 432 16 13 7.91 272 213.69

autism-child 291 14 13 7.46 217 155
autism-adolo 103 14 12 7.59 82 55.86
autism-adult 681 14 13 5.81 504 282.5

synthetic 7020 80 6 3.3 330 290.3

Table 1: Hypergraph Statistics for various Datasets

1. zoo: In this dataset, there are several animals each described with a set of boolean
attributes like, for example, does it have a feather, or is it airborne. There are
several classes of animals, and the aim is to classify animals correctly into its
class.

2. voter: In this, the aim is to classify congressman as democrat versus republican
based on 16 key votes, where each vote is boolean (yea or nay). Each congressmen’s
hyperedge contains on “yay” vertices.

3. autism-child, autism-adolo, autism-adult: These three datasets contain psy-
chological evaluation on a cohort of children, adolescents, and adults, respectively,
for classification into having ASD disorder or not. Attributes are boolean item re-
sponses to behavioral questions. We treat each item (psychological evaluation
question) as a vertex, and with each positively responded item (vertex) becomes
part of the corresponding individual’s hyperedge.

For generating synthetic hypergraphs, we employ the recently proposed hyper-
graph stochastic block-model (hSBM) [14] which are generalization of the traditional
stochastic graph model to a hypergraph setting. This model is fairly straightfor-
ward. Here we describe a slightly augmented process as we need labels for hyper-
edges (rather than partition labels for vertices in hSBM). We start with a set of
vertices and divide them into two equal sets (we restrict ourselves to only two vertex
partitions but can be easily extended for more). We then randomly generate hyper-
edges between any vertices with probability pinter and within vertices in the same
partition with probability pintra. In order to generate clusters or communities one
chooses pinter < pintra, resulting in more dense connections within each partition
rather than across partitions. For a given cardinality c, we set our probability vec-
tor p(c) = [pinter, pintra] = [5, 40] · (log n/n(c−1)), where n is the number of vertices
and order O(K · log n/n(c−1)) is recommended to realize sparse regime i.e. O(n log n)
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hyperedges. The particular value of constant K is chosen to realize not too sparse
hypergraphs and a sufficiently high number of higher-order hyperedges. We realize 25
hypergraphs using the above process with roughly 15n log n to 25n log n hyperedges.
For our experiments we restrict to [2, 6] cardinality hyperedges (average statistics
shown in Table 1). We then label hyperedges into three different classes: those con-
sisting of only vertices from first vertex partition, those from an only second partition,
and those with a mix of vertices from both partitions. The aim, in this case, is to
solve this 3-class classification problem.

4.2 Evaluation Methodology and Experimental Setup

Methods Compared We compare hyperedge embeddings obtained from our pro-
posed method with several baselines. Both the baseline, as well as proposed ap-
proaches, can output hyperedge embeddings in two different ways:

1. Each method can directly output hyperedge embeddings. Our proposed approach
gives direct hyperedge embedding using the dual tensor as the input. We refer
to these embeddings as t2v-dual. Similarly, we have two baselines that give hy-
peredge embeddings directly via eigen-value decomposition of line graph laplacian
(herein e2v-line) and that of proxy dual hypergraph laplacian (herein e2v-dual).
Refer to appendix A for details.

2. We can use these methods to output vertex embeddings first and then combine the
vertex embeddings of the vertices within a hyperedge. We evaluate only two kinds
of combinations - summing the vertex embeddings (sum) or taking the mean of
vertex embeddings (mean). (Note the later is hyperedge cardinality dependent.)
We refer hyperedge embeddings obtained from our proposed approach in this
manner by first obtaining vertex embeddings via decomposing hypergraph tensor,
as t2v. Similarly, for the two baselines, we can first obtain vertex embeddings via
eigen-value decomposition of graph lapalacian and proxy hypergraph laplacian,
which can then be combined to get hyperedge embeddings referred to as e2v and
e2v-hyp, respectively. Refer to appendix A for details.

We therefore, have two different comparisons. First is between embeddings ob-
tained from e2v-line and e2v-dual with t2v-dual embeddings. Second, is between
e2v and e2v-hyp with t2v. The later comparison happens further separately for
both sum and mean combining strategies.

Evaluation Tasks and Setup As described in Section 4.1, each dataset has a
hypergraph and a corresponding classification task associated with it. We first obtain
the hyperedge embeddings for the various datasets. The hyper-parameters specific to
the proposed tensor method (γ and η) were determined using grid searches over the
search spaces: γ = [0.01, 0.5, 5] and η = [0.01, 0.5, 5, 10]. Also the cardinality inputs
α1 = β1 = 2 and α2 = β2 = 8. Further, the hyper-parameter of dimension (d) which
is common to all the methods is determined by grid search over: d = [8, 16, 32, 64].
5-fold cross-validation was used to determine all the best hyperparameters.
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The obtained hyperedge embeddings for a given dataset are utilized for the hyper-
edge classification task associated with the dataset. For each classification task, we
perform several evaluation runs. In each run, we randomly choose 30% of hyperedges
as the test set and train logistic regression classifier using the remaining 70% training
hyperedges. We chose the Area Under Curve (AUC) as the evaluation metric (the
higher, the better). We take average AUC score across five runs as the final AUC.
We performed Logistic regression with l2-norm regularization whose hyper-parameter
was chosen by 5-fold cross-validation using a grid search.

4.3 Results and Discussion

As detailed in prior section 4.2, for each dataset we have two different sets of com-
parison based on two different ways of obtaining hyperedge embedding: (a) directly
obtaining hyperedge embeddings or (b) obtained by aggregating (sum or mean) ver-
tex embeddings. For case (a) we compare t2v-dual versus e2v-line/e2v-dual and
for case (b) compare t2v versus e2v/e2v-hyp. Results are reported in Table 2 for
various datasets. We refer to methods with t2v- prefix jointly as “t2v- methods”.
Similarly, “e2v- methods” for all methods with e2v- prefix.

One of our central hypothesis is that embeddings obtained from methods which
try to retain the higher-order information within hypergraphs are better than those
methods which do not. We observe from Table 2 (the best scores for each row are
highlighted in bold) that tensor-based methods (t2v- methods) consistently outper-
form graph-based methods (e2v- methods), if not worse. This observation supports
our hypothesis that tensor-based models, which preserve the joint information within
a hyperedge, indeed, are better models for hypergraph representations.

Also while comparing between the two vertex-embedding aggregation functions:
sum and average, we observe (see “sum” and “average” rows in Table 2 across e2v,
e2v-hyp and t2v) that in most of the cases hyperedge-embeddings obtained via
summation of vertex-embeddings, perform better and in some cases those obtained
via averaging are performing poorly, especially for e2v (like synthetic and autism
datasets). Although, summation based aggregation function is performing better in
several cases, in a couple of cases, like voter and zoo datasets, its not the case. This
observation highlights the fact that the choice of aggregation function is itself a hyper-
parameter, which requires tuning in the case of vertex-embedding based methods and
a critical drawback. Direct hyperedge-embedding methods, on the other hand, are not
subject to any such choices.

Lastly, we note that summation based t2v is consistently at least as good as
t2v-dual, except for autism-adolo and synthetic datasets where it outperforms. No-
tice that t2v employs hypergraph tensors, and the number of non-zeros in them is
proportional to the number of hyperedges and t2v-dual uses dual-tensor whose non-
zeros are proportional to the number of vertices. Given that in all of our datasets,
the number of hyperedges is much more than the number of vertices, the dual-tensor
becomes very sparse and possibly explains the relatively weaker performance of t2v-
dual. (Remark : But we still might choose to prefer t2v-dual because of the criticism
we mentioned in the last paragraph.)
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Eigen Decomp. Tensor Decomp.

Dataset Embed. Combination graph proxy hyp. hyp. tensor
(e2v) (e2v-hyp) (t2v)

Node Embed Sum 0.42 0.40 0.83
Node Embed Average 0.60 0.40 0.78

Zoo line graph proxy dual dual tensor
(e2v-line) (e2v-dual) (t2v-dual)

Only Hyperedge Embed 0.52 0.60 0.83

Eigen Decomp. Tensor Decomp.

Dataset Embed. Combination graph proxy hyp. hyp. tensor
(e2v) (e2v-hyp) (t2v)

Node Embed Sum 0.94 0.94 0.96
Node Embed Average 0.95 0.94 0.96

Voter line graph proxy dual dual tensor
(e2v-line) (e2v-dual) (t2v-dual)

Only Hyperedge Embed 0.95 0.95 0.96

Eigen Decomp. Tensor Decomp.

Dataset Embed. Combination graph proxy hyp. hyp. tensor
(e2v) (e2v-hyp) (t2v)

Node Embed Sum 0.99 0.98 0.99
Node Embed Average 0.73 0.98 0.98

Autism line graph proxy dual dual tensor
Child (e2v-line) (e2v-dual) (t2v-dual)

Only Hyperedge Embed 0.97 0.71 0.99

Eigen Decomp. Tensor Decomp.

Dataset Embed. Combination graph proxy hyp. hyp. tensor
(e2v) (e2v-hyp) (t2v)

Node Embed Sum 0.90 0.91 0.95
Node Embed Average 0.65 0.90 0.91

Autism line graph proxy dual dual tensor
Adolescent (e2v-line) (e2v-dual) (t2v-dual)

Only Hyperedge Embed 0.86 0.65 0.92

Eigen Decomp. Tensor Decomp.

Dataset Embed. Combination graph proxy hyp. hyp. tensor
(e2v) (e2v-hyp) (t2v)

Node Embed Sum 1.00 1.00 1.00
Node Embed Average 0.76 1.00 1.00

Autism line graph proxy dual dual tensor
Adult (e2v-line) (e2v-dual) (t2v-dual)

Only Hyperedge Embed 0.98 0.75 1.00

Eigen Decomp. Tensor Decomp.

Dataset Embed. Combination graph proxy hyp. hyp. tensor
(e2v) (e2v-hyp) (t2v)

Node Embed Sum 0.94 0.94 0.99
Node Embed Average 0.52 0.56 0.99

Synthetic line graph proxy dual dual tensor
(e2v-line) (e2v-dual) (t2v-dual)

Only Hyperedge Embed 0.94 0.94 0.94

Table 2: Classification AUC Scores of tensor methods compared to baselines
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We also note that the difference between t2v- methods and the e2v- methods
is not always similar. For example, this difference is much higher in the zoo dataset
as compared to others. Observations such as this and the one described in the last
paragraph, points us to several intuitive questions like what kinds of datasets and their
hypergraph properties (avg. degree, size, and others) affect the choice of method? Or
when would we prefer working using graph methods, and tensor methods might be
overkill? Or employ dual-tensor versus hypergraph-tensor? These questions require
both theoretical understanding as well as extensive experimentation using a larger
variety of data, and hence, we would like to take this as a separate future work. The
focus of this work is to introduce higher-order information retaining methodology.

5 Conclusion

In this paper, we have proposed a tensor-based algebraic method to generate repre-
sentations for both hyperedges as well as hypergraph nodes while pointing out the
higher-order information in the hypergraph structure. We introduce the concept of
dual tensors corresponding to the hypergraph dual. We then propose a novel higher-
order information retaining approach of using factors from the joint decomposition of
k-way tensors corresponding to k-uniform sub-hypergraphs, as generic node & hyper-
edge representations. We demonstrate that our method outperforms several graph-
based baselines in terms of accuracy. We, therefore, argue that our advanced tensor
methods are principally suited for hypergraphs (and consequently also for graphs)
while sustaining accuracy and efficiency.

A Appendix

Hyperedge Embeddings Using Spectral Methods These set of methods ex-
tract embeddings as the eigenvectors associated with Laplacian matrices correspond-
ing the following four adjacency matrices. (1) Adjacency matrix associated with a
hypergraph [24], is defined as: Ahyp = (HTWeH − Dv) and laplacian: Lhyp =

(I − Dv
−1/2AhypDv

−1/2) where We (We(i, i) = R(gi)) is a diagonal matrix con-
taining the weights of each hyperedge and Dv is a diagonal matrix containing the
degree of each vertex (2) Agraph = HTWeH is the weighted graph associated with

the hypergraph (Ahyp) and its laplacian: Lgraph = (I −Dv
−1/2AgraphDv

−1/2) (3)
we consider the following adjacency matrix Aline = HHT associated with what
we refer to as the line hypergraph. This inverted hypergraph is a graph (unlike
the dual which is a hypergraph) and there is an edge between two nodes if the
hyperedges corresponding to the nodes in the original hypergraph have nodes in
common. Weight of this edge is the number of common nodes. Its laplacian is:
Lline = (I − Dv

−1/2AlineDv
−1/2) (4) The adjacency matrix associated with the

hypergraph dual is: Adual = (Hdual
TWvHdual−De) = (HWvH

T −De) where Wv

is a diagonal matrix containing the weights of each node and De is a diagonal matrix
containing the degree of each hyperedge. We assume no weights on the nodes and
take Wv = I. Its laplacian is: Ldual = (I−De

−1/2AdualDe
−1/2). We get vertex em-

beddings using of (1) and hyperedge embedding using (3) via eigen-decomposition,
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and we refer to as e2v and e2v-line, respectively. Similarly, we get another pair of
vertex embeddings using (2) and hyperedge embedding using (4) which we refer as
e2v-hyp and e2v-dual, respectively. Note e2v and e2v-hyp are used to denote the
hyperedge embeddings obtained by combining vertex embeddings and not the vertex
embeddings themselves.
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