
Hyperedge2vec: Distributed Representations for Hyperedges
Ankit Sharma

University of Minnesota, USA
ankit@cs.umn.edu

Shafiq R. Joty
Nanyang Tech. University, Singapore

srjoty@ntu.edu.sg

Himanshu Kharakwal
LNM-IIT, India

himanshukharkwal765@gmail.com

Jaideep Srivastava
University of Minnesota, USA

srivasta@cs.umn.edu

ABSTRACT
Data structured in the form of overlapping or non-overlapping sets is
found in a variety of domains, sometimes explicitly but often subtly.
For example, teams, which are of prime importance in social science
studies are “sets of individuals”; “item sets” in pattern mining are sets
and for various types of analysis in language studies a sentence can
be considered as a “set or bag of words”. Although building models
and inference algorithms for structured data has been an important
task in the fields of machine learning and statistics, research on
“set-like” data still remains less explored. Relationships between
pairs of elements can be modeled as edges in a graph. However, for
modeling relationships that involve all members of a set, a hyperedge
is a more natural representation. In this work, we focus on the
problem of embedding hyperedges in a hypergraph (a network of
overlapping sets) to a low dimensional vector space. We propose a
probabilistic deep-learning based method as well as a tensor-based
algebraic model, both of which capture the hypergraph structure in a
principled manner without loosing set-level information. Our central
focus is to highlight the connection between hypergraphs (topology),
tensors (algebra) and probabilistic models. We present a number
of baselines, some of which adapt existing node-level embedding
models to the hyperedge-level, as well as sequence based language
techniques which are adapted for set structured hypergraph topology.
The performance is evaluated with a network of social groups and
a network of word phrases. Our experiments show that accuracy
wise our methods perform similar to those of baselines which are
not designed for hypergraphs. Moreover, our tensor based method is
more efficient than deep-learning based auto-encoder method. We,
therefore, argue that the proposed methods are more generic methods
suitable for hypergraphs (and therefore also for graphs) that preserve
accuracy and efficiency.

ACM Reference Format:
In Proceedings of ACM Conference (Conference’18). ACM, London, UK,

11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In group structured data we have multiple entities related by some
form of group relationships. Such data is more abundantly found in
the real world than has been usually studied [23]. In social networks
domain, team data from massive online multi-player games [4] such
as World of Warcraft, group communication tools such as Skype
and Google Docs and research collaborations [1, 50]. There are

Conference’18, August 2018, London, UK
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Example illustrating “set-like” hypergraph structure
from two domains. Left is a collaboration network between four
individuals and on right is a network resulting from two sen-
tences: “He is a good boy” & “She is a good girl”; and eight
word nodes.

other fields in which structural relationships between entities is
important as well, and large datasets capturing them exist. Exam-
ples include Natural Language Processing [10], Biology [32, 33],
e-commerce [17, 22] and Chemistry [7]. Figure 1 shows such exam-
ples for networks of groups and sentences.

Hypergraph [12], which is a generalization of graphs, is a popular
model to naturally capture higher-order relationships between sets of
objects (Figure 2) [23]. Within machine learning, algorithms guided
by the structure of such higher order networks [61] have found
applications in a variety of domains [25, 37, 45, 46, 56].

More recently, the interest of representation learning in NLP [38]
has stimulated its application in graph embedding (learning low
dimensional representation for graph nodes) [15, 27, 41, 52]. How-
ever, this new line of research is limited to simple graphs and we are
unaware of any work that considers hyperedge embeddings (learning
representations for hyperedges). In this paper, we propose methods
which (1) learn hypergraph embeddings directly, (2) leverage the
hypergraph topology and (3) not loose the hyperedge-level joint
information. These learned embeddings can then be employed by
a supervised or semi-supervised algorithm to perform various pre-
dictive tasks pertaining to hyperedges. For example, performance
prediction of a team (set of individuals) engaged in a collaborative
task, or sentiment analysis of a sentence (set of words).

Although, there have been a variety of attempts to learn node em-
beddings for hypergraphs by extending traditional graph embedding
methods for hypergraph setting. These approaches differ in the extent
they address the aims (2) and (3) as pointed previously. In the first
category, there are a number of methods that incorporate the hyper-
graph topology using proxy graphs [32, 61], therefore, incurring loss
of information. However, Agarwal et al.[2] do not agree that such
representations can be learned by constructing graphs, which are
proxies for the hypergraph structure. In the second category, there

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’18, August 2018, London, UK Ankit Sharma, Shafiq R. Joty, Himanshu Kharakwal, and Jaideep Srivastava

are methods that take into account the hyperedge-level informa-
tion, like the classical Neural Language Model which maintains the
higher order sequence information [10]. But their model is designed
for sequences and completely ignores the topology (sequences are
linked by common words forming a network of sequences). However
recently, there has been interest in modeling “set-like” structures
within deep-learning community [43, 59]. But they do not consider
the hypergraph structure between the sets and therefore, not model
hypergraphs in a principled manner. The third category are those
methods that do not ignore the topology completely and also re-
tain the hyperedge-level information. Among this are k-way tensor
based methods that explicitly do not work on hypergraph [14, 47],
but the connection exists in the form that k-way tensor represents a
k-uniform hypergraph [42]. But they are only restricted to uniform
hypergraphs.

In this work, we propose two methods that (a) directly learn hy-
peredge embeddings for general hypergraphs; and (b) capture the
hypergraph structure in a principled manner. The first method is a
tensor-based algebraic method and the second method is an auto-
encoder based deep-learning method. In addition, we also discuss
the interesting connection between hypergraphs (topology), tensors
(algebra) and probabilistic models. The proposed models are com-
pared with a number of interesting baselines, some of which adapt
existing node-level embedding models to hypergraph setting as well
as adapting sequence based NLP techniques for set structured hy-
pergraphs. The models are compared on two real world datasets: a
social group dataset (network of teams as a hypergraph) from an
multi-player online game for team (hyperedge) performance predic-
tion as well as language networks (sentence/phrase hypergraphs) for
phrase-level sentiment analysis. Our experiments show that accuracy
wise our methods perform similar to those of baselines which are
not designed for hypergraphs. Moreover, our tensor based method is
more efficient than the deep-learning based auto-encoder method.

The main contributions of this work are as follows:

• We propose the novel concept of a dual tensor, corresponding
to the hypergraph dual that allows us to get a hyperedge
embedding directly.

• We propose a general hypergraph tensor decomposition method
designed for general hypergraphs (containing different cardi-
nality hyperedges) unlike simple uniform hypergraph tensor
decomposition, which is restricted to fixed cardinality hyper-
edges (i.e. uniform hypergraph). We are unaware of any such
works or applications employing this approach.

• We propose the novel idea of using de-noising auto-encoders
in a hypergraph setting. Moreover, we also develop techniques
for creating noise using random-walks over hasse diagram
topology, which is original and unique.

• We highlight and argue that embeddings from tensor based
methods have a natural hypergraph theoretic interpretation
unlike the deep learning based black-box approaches.

• Our proposed methods learn hypergraph embeddings based
on the unique approach of leveraging the existing structure
present in network data as context, in contrast to context
generation based existing graph embedding techniques.

Following is the outline for the rest of the paper. In section 2, we
describe the problem definition and statement followed by Section 3,

Figure 2: Example of a hypergraph (left) and the hasse diagram
(right) corresponding to this hypergraph’s simplicial complex.

where we describe in detail the various methods proposed in this
paper. Section 4 describes the datasets, experimental tasks & set-
tings for the models. Section 5 provides an overview of the related
literature followed by conclusion and appendix.

2 PRELIMINARIES
In this paper we consider the scenario where we have a collec-
tion of elements. These elements can represent individual actors in
case of social groups or words in sentences or items in item-sets
within a transaction database. In other words a social group or a
sentence or an item-set are sets which contain these elements. Let
V = {v1,v2, ...,vn } represents n elements and we havem different
sets defined over these elements, denoted by G = {д1,д2, ...,дm },
where дi ⊆ V represents the ith set. The cardinality |дi | represents
the number of elements in the set. Also each set дi ∈ G has an
occurrence number R(дi), which denotes the number of times it has
occurred. Such overlapping or non-overlapping sets can be modeled
as a hypergraph [12], where the nodes and hyperedges, represent the
elements and sets, respectively. This hypergraph is represented as
Nд = (V ,G) with G as the collection of hyperedges over the nodes
V . The incidence matrix H ∈ {0, 1} |G |× |V | for Nд represents the
presence of nodes in different hyperedges with H(дi ,v) = 1 if v ∈ дi
else 0. We also define degree d(v) of a vertex v as the number of
hyperedges incident on this vertex i.e. d(v) = ∑

дi ∈G H(дi ,v). A
specialization of hypergraph model is the simplicial complex [40]
(Figure 2), in which additionally each hyperedge has the subset
closure property, i.e., each subset of hyperedge is also a valid hyper-
edge.

Problem Statement: Given this setting, our goal is to learn the
mapping ϕ : G → Rd from hyperedges to feature representations
(i.e., embeddings) that can be used to build predictive models involv-
ing sets. Here d is a parameter specifying the number of dimensions
of the embedding vector. Equivalently, ϕ can be thought of as a
look-up matrix of size |G | × d , where |G | is the total number of sets
or hyperedges.

3 METHODOLOGY
There are several methods to learn representation of nodes in a graph.
Given that a hyperedge is a set of nodes, a natural question is if we
can combine node level embeddings (learned using existing meth-
ods) within a given hyperedge to find a suitable representation of
the hyperedge? Since a large number of ways of combining node
embeddings is possible, it reduces to the problem of finding the best
combination, with no guarantee that the best one is still found since
this approach is greedy. Therefore, we propose two methods that

Hyperedge2vec: Distributed Representations for Hyperedges Conference’18, August 2018, London, UK

learn the embeddings for hyperedges directly in a more principled
manner. First, a tensor based method is focused on retaining the
set-level information intact while harnessing the hypergraph net-
work structure. Second an auto-encoder based method harnesses the
non-linearity of representation offered by deep learning to gener-
ate crisp and powerful embeddings. The tensor based method has
a natural hasse diagram based topological interpretation, and can
generate both node and hyperedge embeddings, whereas the deep
learning method is more black-box, and can only generate hyperedge
embeddings.

3.1 Hyperedge2vec using Hypergraph Tensor
Decomposition

In this section we develop tensor (higher-order matrix) based linear
algebraic methods that learn node as well as hyperedge embedding
by taking into account the joint probability over a hyperedge. The
idea behind using tensors is that they retain the set-level information
contained in a hypergraph, unlike the proxy graphs (corresponding
to hypergraphs) based techniques (used as baselines in our experi-
ments), which approximate hyperedge or set-level information with
dyadic edge-level information. This idea is not new, and was pro-
posed earlier by Shashua et. al. [47], and more recently by [26]. The
following proposition puts this argument more formally.

PROPOSITION 1. Given a set of random variables X1, ...Xc (c ≥
2), and H (.) as the information entropy, we have ([18, p. 34]):

H (X1, ...,Xc) ≤
(1
c − 1

) ∑
(i, j)⊆2[c]

H (Xi ,X j) (1)

Therefore, the joint probability distribution over c cardinality
hyperedges is more informative (lower entropy) than the sum total
of information attained from probability distributions over each of
the

(c
2
)

dyadic edges.
Although tensors can retain higher order information, most re-

search to date has focused on uniform hypergraphs using symmetric
tensors. We propose an approach which is principally suited for
general hypergraph structured data using higher-order tensors. For
a given hypergraph we can extract a sub-hypergraph that only con-
sists of the hyperedges with cardinality k. This sub-hypergraph
is a k-uniform hypergraph or k-graph [20]. Corresponding to this
k-uniform hypergraph, we can define a kth order n-dimensional sym-
metric tensor [42] Ak

hyp = (ap1,p2, ..,pk) ∈ R[k,n] whose elements
are as follows:

ap1,p2, ..,pk = R(дi) (2)
where {vp1 ,vp2 , ...,vpk } ∈ дi and |дi | = k,∀i ∈ {1, ...,m}. Note that
symmetry here implies that the value of element ap1,p2, ..,pk is invari-
ant under any permutation of its indices (p1,p2, ..,pk). Rest of the
elements in the tensor are zeros. We also define the lexicographically
ordered index set for hyperedges:

Pk =
{
p|p = (p1,p2, ..,pk) where {vp1 ,vp2 , ...,vpk } ∈ дi ,

∀дi ∈ G s.t. |дi | = k and p1 < p2 < ... < pk
}
,

(3)

and we have different sets {Pk }∀k ∈ {cmin , .., cmax } (cmin and
cmax are the maximum and the minimum hyperedge cardinality
in the given hypergraph). Notice that Pk contains unique (non-
repetitive) indexes as there is only a single p corresponding to

each of the different hyperedges дi ∈ G. Consequently, we have
|Pk | = |{дi : |дi | = k}|.

In a similar manner we can also define a dual tensor, correspond-
ing to hypergraph dual where the roles of nodes and hyperedges are
interchanged. We consider all the hyperedges in the hypergraph dual
that are of cardinality k . This basically corresponds to all the vertices
in the original hypergraph which have a degree of k , i.e., they are part
of exactly k hyperedges in the original hypergraph. Corresponding
to this k-uniform hypergraph dual, we can define a kth order m-
dimensional symmetric dual tensor Ak

dual = (aq1,q2, ..,qk) ∈ R[k,m]

whose elements are initialized as follows:

aq1,q2, ..,qk = 1 (4)

where {дq1 ,дq2 , ...,дqk } ∋ vj and d(vj) = k,∀j ∈ {1, ...,n}. Note
that this tensor is also symmetric and rest all the elements in the
tensor are zeros. Again, we define the lexicographically ordered
index set for dual hyperedges (vertices in the original hypegraph):

Qk =
{
q|q = (q1,q2, ..,qk) where vj ∈ {дq1 ,дq2 , ...,дqk },
∀vj ∈ V s.t. |d(vj)| = k and q1 < q2 < ... < qk

}
,

(5)

and we have different sets {Qk }∀k ∈ {dmin , ..,dmax } (dmin and
dmax are the maximum and the minimum vertex degree in the
original hypergraph). Again, notice that Qk contains unique (non-
repetitive) indexes as there is only a single q corresponding to each
of the different dual hyperedge (vertex in the original hypergraph)
i.e. vi ∈ V . Consequently, we have |Qk | = |{vi : d(vi) = k}|.

To realize our aim of learning node or hyperedge embeddings
we perform Symmetric Tensor Decomposition [19], in a manner
similar to [34], but jointly across different cardinality hypergraph
tensors (for node embeddings) or dual tensors (for hyperedge em-
beddings). Specifically, for the hyperedge embeddings we consider
the following optimization formulation:

f (λ,Z) =

α2∑
k=α1

DKL
(
Mk

Ak
dual

)
=

α2∑
k=α1

∑
q∈Qk

(
Mk

q − akq logMk
q

)
(6)

where,

Mk =

d∑
r=1

λr (zr ⊗ zr ⊗ ... ⊗ zr︸ ︷︷ ︸
k times

) ≡
d∑
r=1

λr z⊗kr (7)

with ⊗ is the Kronecker product (generalized outer product, ref. [5]),
zr ∈ Rm , λr ∈ R, Z ∈ Rm×d with Z(:, r) = zr and akq is the
aq1,q2, ..,qk entry of Ak

dual. Given the dual tensors Ak
dual,∀k ∈

{α1, ..,α2} (α1 and α2 are the minimum and maximum cardinali-
ties considered for the dual hyperedges), Equation 6 aims to learn
symmetric decomposition Mk with Z as the matrix containing d-
dimensional embeddings for them hyperedges. Notice that the em-
beddings in Z are shared across the different order (k) decomposi-
tions Mk . Moreover, we employ KL-divergence based loss as our
hypergraph data is a count data which is more appropriately modeled
using Poisson distribution [16]. Furthermore, although there are k!
entries for each k cardinality hyperedge in the dual tensor Ak

dual,
however, the summation in Equation 6 is performed over only the

Conference’18, August 2018, London, UK Ankit Sharma, Shafiq R. Joty, Himanshu Kharakwal, and Jaideep Srivastava

unique set of indexes in Qk . This helps us escape the actual con-
struction of the complete dual tensors (Ak

dual) which otherwise may
result in exponential space explosion. This idea of using only unique
index sets (Qk) has been leveraged by both Kolda et. al. [34] [6] as
well as by Shashua et. al. [47] in form of semi-norms.

We highlight that (z⊗kr)q = zq1r zq2r ···zqk r with zqj r = Z(qj , r) ∈
R. Then the gradients for Equation 6 are given by:

∂ f (λ,Z)
∂λr

=

α2∑
k=α1

∑
q∈Qk

{
(λr z⊗kr)q −

akq (λr z⊗kr)q∑d
r=1 λr z⊗kr

}
(8)

∂ f (λ,Z)
∂zjr

=

α2∑
k=α1

∑
q∈Qk

{
(λr zq1r zq2r · · · zqj−1r · · · zqk r)

−
akq (λr zq1r zq2r · · · zqj−1r · · · zqk r)∑d

r=1 λr z⊗kr

} (9)

Furthermore, following [34] we add the following penalty to
address the scaling ambiguity by enforcing the following penalty
and gradient:

pγ (Z) = γ
d∑
r=1

(zr
⊺zr − 1)2 ,

∂pγ

∂zr
= 4γ (zr

⊺zr − 1)zr (10)

Another important issue that requires attention is that the optimiza-
tion function f (λ,Z) only considers dual hyperedges of cardinalities
within {α1, ..,α2}. As we will discuss in section 4, due to scalability
reasons most likely {α1, ..,α2} ⊂ {cmin , ..., cmax }. Given this set-
ting, it is therefore, possible that some hyperedges (in the original
hypergraph) might not contain any vertex which has degree in the
range {α1, ..,α2}. Such hyperedges will then suffer from the cold
start issue and to remedy that we leverage the auxiliary information
in the form of the hypergraph structure. We therefore, introduce the
following penalty and gradient:

pη (Z) = η
d∑
r=1

z⊺r Ldualzr ,
∂pη

∂zr
= 2ηLdualzr (11)

where Ldual is the dual hypergraph laplacian (see detail in Appen-
dix A.2). This topology smoothing constraint allows the diffusion
of latent embeddings from the not cold-start vertices to nearby cold-
start vertices, in order for the later to achieve meaningful non-zero
embeddings. Notice that the above laplacian contains the entire hy-
pergraph dual structure, therefore, allowing information exchange
(1) across different cardinality hyperedges and (2) also between
hyperedges that are not suffering from cold start. It would be inter-
esting to develop other laplacians that (a) only affect the embeddings
of the cold-start hyperedges, (b) only allow hyperedges of same
cardinality to affect each others embeddings and (c) employ hasse
diagram based laplacian [46] which explicitly models the cardinality
hierarchy.

Putting it all together, the complete optimization objective func-
tion is:

ftot (λ,Z) = f (λ,Z) + pγ (Z) + pη (Z) (12)
where the choice of γ is the weight of the penalty on the norm of
the columns of Z and the choice of η determines the penalty on
the extent of smoothness (similarity) between the embeddings of

hyperedges within neighborhood of each other. We call the algorithm
that optimizes the above objective (Equation 12) as Hypergraph-
Tensor-Decomposition (HTD) (Algorithm 1).

Algorithm 1 HTD (d,m,α1,α2,γ ,η,Ak
dual∀k ∈ {α1, ..,α2}, Ldual)

1: randomly initialize Z ∈ Rm×d and λ ∈ Rd
2: repeat
3: for r = 1 to d do
4: Update λr using Equation 8
5: for j = 1 tom do
6: Update zjr using Equation 9
7: end for
8: Update zr using Equation 10
9: Update zr using Equation 11

10: end for
11: until fit criteria achieved or max. # of iterations exceeded
12: return Z

Notice that till now we have described the process of learn-
ing hyperedge embeddings. The same process can also be used
for vertex embedding same algorithm 1 can be used to get the
vertex embeddings, by calling HTD (d,n, β1, β2,γ ,η,Ak

hyp∀k ∈
{β1, .., β2}, Lhyp). Parameters β1, β2 are the limits for the hyper-
edge cardinalities considered in Equation 6 and Lhyp is the hyper-
graph laplacian (see Appendix A.2). We shall jointly refer to the
embeddings achieved for nodes and hyperedges via the above tensor
decomposition techniques as t2v. Lastly, we would like to highlight
that the tensors that we have employed are super-symmetric and
hence able to capture distribution over sets rather than sequence. But
in general we can employ a k-way tensor which is not symmetric
to even capture sequence. In this sense tensors are more general
purpose.

3.2 Hyperedge2Vec Using Hasse De-noising
Autoencoder

An autoencoder [9] takes an input vector x ∈ [0, 1]n and maps it
to a latent representation y ∈ [0, 1]d . This is typically done using
an affine mapping followed by a non-linearity (more so when the
input, like in our case, is binary [58]): y = fθ (x) = σ (Wx + b),
with parameters θ = {W, b}. Here, σ is a sigmoid function defined
as σ (x) = 1/(1 + e−x), W is a Rn×d weight matrix and b is the
offset. This latent representation is then used to reconstruct a vector
z = дθ ′(y) = σ (W′y + b′), in the input space, z ∈ [0, 1]n with
parameters θ ′ = {W′, b′}. The mappings fθ and gθ ′ are referred to
as the encoder and decoder, respectively. The representation y is
learned by minimizing the following reconstruction error:

θ∗,θ ′∗ = arg min
θ ∗,θ ′∗

1
m

m∑
i=1

L(xi , zi) = arg min
θ ∗,θ ′∗

1
m

m∑
i=1

L(xi ,дθ ′(fθ (xi))

(13)
where L is a loss function, which in case of binary or bit probabilities
is often chosen as the cross-entropy loss:

L(x, z) =
n∑
j=1

[x(j) log z(j) + (1 − x(j)) log(1 − z(j))] (14)

Hyperedge2vec: Distributed Representations for Hyperedges Conference’18, August 2018, London, UK

Figure 3: For the given hypergraph between four nodes
(A,B,C,D) we consider the complete hasse lattice. For a given
hyperedge {B,C} (square box) we then construct the sub-lattice
made of hyperedges with distance h = 2 from {B,C}. We per-
form random walk (with τ = 0.2) starting from the node cor-
responding to hyperedge {B,C} and sample p = 3 hyperedges
(nodes visited by the random walk; shown with a check-mark
✓). Finally, we train the autoencoder to reconstruct the original
hyperedge from these p noisy hyperedges.

In their paper, Vincent et al. [58] have shown that minimizing re-
construction amounts to maximizing the lower bound on the mutual
information between input x and the representation y. However, they
have further argued ([57]) that y retaining information about input
x is insufficient. They further, propose the idea that the learned rep-
resentation should be able to recover (denoising) the original input
even after being trained with corrupted input (adding noise). They
generate the corrupted input (x̃), using a stochastic mapping q(x̃|x).
Choice of noise is usually either Gaussian for real inputs and Salt-
and-pepper noise for discrete inputs. The denoising autoencoder
then learns the representation for each input, x, same as Equation 13,
but with the following modified loss function: L(x(i),дθ ′(fθ (x̃(i)))).

We leverage the denoising autoencoder for learning represen-
tation for jth hyperedge, by treating each hyperedge as an input,
x = H(j, :). The size of this input vector for each hyperedge is n,
which is the number of vertices in the hypergraph. In most natural
hypergraphs, specially social networks, n can be quiet high ranging
from thousands to millions or even billions (like Facebook for exam-
ple). Therefore, randomly using a discrete noise like salt-and-pepper,
might not be reasonable, as there are large number of possible per-
mutations (as size n is large) and not all of them are related. Random
addition of 1s or deletion of existing 1s from x, amounts to randomly
adding or deleting vertices to the hyperedge corresponding to x. This
might end up in new hyperedges that are completely unrelated to the
given hyperedge (x). For example, users (nodes) in a social network
from completely different regions of the network suddenly form
a group (hyperedge). Such anomalous scenarios rarely happen in
practice and social groups evolve in a gradual fashion via simple
processes [45, 46].

Rather, we take advantage of the hypergraph structure to systemat-
ically guide us in generating this noise. A hypergraph can be defined
by its corresponding hasse lattice [46]. For a given hyperedge (x),
we consider the sub-lattice consisting of only those hyperedges that
are at distance h from it in the complete lattice. On this sub-lattice
we sample p hyperedges (nodes in sub-lattice) by performing ran-
dom walk starting at the given hyperedge’s node (see Figure 3). We
assume that all the nodes in the sub-lattice which correspond to pre-
viously occurred hyperedge дi have weight R(дi) and rest all nodes
have a constant weight τ . During random walk from a given node
we choose a neighboring node (as the next node) in proportion to
this neighboring node’s weight as compared to the other neighboring
nodes. Our stochastic mapping q(x̃|x) is therefore, a random walk
on the sub-lattice of hyperdge (x) containing hyperedges at distance
h from it. Intuitively, the hyperedges coming within a reasonable
distance will affect each others representations and will have more
similar representations. We will refer to the hyperedge representa-
tions learned by the above autoencoder technique, as h2v-auto.

4 EXPERIMENTS
4.1 Dataset Description
As the first dataset, we use group interaction log-data of the Sony’s
Online multi-player game EverQuest II (EQ II) (everquest2.com)
for a time period of nine months. In this game, several players
work together as a team to perform various tasks. Each team earn
points after completion of each task, and as the teams progress by
earning points, they are escalated to different levels of game play.
The interestingness of the game increases with each level. The points
earned by the teams are treated as a measure of group performance.
Each set of players who played together is treated as a hyperedge.
We treat the number of times same set of players play together again
as hyperedge occurrence number (R(дi)). Players can participate
in several teams over time, therefore, resulting in a hypergraph
with overlapping hyperedges. We consider hyperedges of cardinality
∈ [2, 6] as almost 90% of our hyperedges lie within this range. The
resulting dataset contains a total of 5964 hyperedges (teams) among
6536 nodes (players).

Second dataset, is the fully labeled and publicly available sen-
timent analysis corpus of Stanford Sentiment Treebank (LangNet)
[49]. This dataset is based on the reviews from a movie review
website (rottentomatoes.com) and contains 215,154 unique phrases.
Each of the phrases are labeled with a sentiment score (a real num-
ber ∈ [0, 1], larger value indicates positive sentiment) by human
annotators. Each phrase is a set or hyperedge of words. As there
is no occurrence information for a phrase hyperedge we consider
R(дi) = 1,∀i ∈ {1, ...,m}. Given that words are shared across vari-
ous phrases, these common words connect the phrase hyperedges,
resulting in a phrase hypergraph with overlapping phrase hyperedges.
Again, we only consider hyperedges of cardinality ∈ [2, 6]. After
applying this cardinality filter we are left with 141,410 hyperedges
(phrases) and 21,122 nodes (words).

4.2 Evaluation Methodology and Experimental
Setup

Conference’18, August 2018, London, UK Ankit Sharma, Shafiq R. Joty, Himanshu Kharakwal, and Jaideep Srivastava

4.2.1 Methods Compared. As mentioned before we refer to
our proposed methods: tensor based hypergraph tensor decompo-
sition and deep auto-encoder based hypergraph auto-encoder, as
t2v and h2v-auto, respectively. We compare our proposed meth-
ods against six baselines each of which generates hyperedge as
well as node embeddings. (1) h2v-DM (refer section A.1) (2) h2v-
DBOW (refer section A.1) (3) h2v-inv (refer section A.2) (4) h2v-
dual(refer section A.2) (5) e2v (refer section A.2) (6) e2v-hyp (refer
section A.2). Methods (1-2) are adapted from sequence based lan-
guage models for set structured hypergraph data. Methods (3-6) are
various kind of dyadic graph based embedding methods adapted for
hypergraph setting.

Except for h2v-auto, each of the baselines as well as t2v outputs
both node as well as hyperedge embeddings of dimension d =
128. We further combine the node and hyperedge embedding using
five different strategies: (i) node embedding summation (dimension
d = 128), (ii) node embedding summation and concatenation with
hyperedge embedding (dimension 2×d = 256), (iii) node embedding
averaging (dimension d = 128), (iv) node embedding averaging and
concatenation with hyperedge embedding (dimension 2 × d = 256),
and (v) only hyperedge embedding (dimension d = 128). h2v-auto
only produces hyperedge embeddings of dimension d = 128. But it
builds the embeddings using three different scenarios as mentioned
in next section. Therefore, in total we have 38 (= 35 + 3) different
scenarios each resulting in a different hyperedge embedding.

4.2.2 Evaluation Tasks and Setup. We perform two regres-
sion based tasks for the two datasets. In EQII dataset each team
(hyperedge) has a team performance score associated with it. This
team performance score is a real number, equal to the number of
points earned by the team while performing one or more tasks within
a gaming session. We treat the embedding learned for a given team
(hyperedge) as its feature vector which is associated with a real num-
ber (team performance). We therefore, perform on regression over
all the hyperedges (teams) with team performance as the dependent
variable.

Similarly, in LangNet dataset each phrase (hyperedge) has a
sentiment score associated with it, which again is a real number.
Similar to the team dataset above, we treat the embedding learned for
a given phrase (hyperedge) as its feature vector which is associated
with a real number (sentiment score). We therefore, treat this as a
regression task with sentiment score as the dependent variable and
perform regression using the feature matrix containing embeddings
of all the phrases.

For both the tasks we just described, we perform several evalua-
tion runs. In each run we randomly choose 30% of hyperedges (teams
or phrases) as the test set and learn ridge regression parameters using
the remaining 70% training hyperedges for each of the 38 different
embedding scenarios. Root mean squared error (RMSE) was chosen
as the evaluation metric (the lower, the better). RMSE was calculated
for each of the 38 scenarios and for each run. Final RMSE score was
taken as the average RMSE score across five runs. Ridge regression’s
hyper-parameter was chosen by 5-fold cross-validation.

For t2v we found γ = 0.1 and η = 0.2 as the best parameters using
grid search. For the auto-encoder method (h2v-auto) we consider
three scenarios: (1) single hidden layer (L1) of d = 128; (2) two
hidden layers (L1 & L2) with size of L1 : d = 96 and of L2 :

d = 32. We concatenate these embedding to get a single d = 128
size embedding; and (3) two hidden layers (L1 & L2) with size of
L1 : d = 512 and of L2 : d = 128. We use the output of L2, which is
of dimension d = 128, as the embedding. For sampling, we use the
distance parameter h = 2 for generating the sub-lattice and τ = 0.2
for both datasets. Also, p = 10 & p = 5 number of hyperedges
are sampled (corresponding to each hyperedge) from EQII and
LangNet, respectively.

4.3 Results and Discussion
Tables 1 & 2 show the RMSE scores of t2v (as compared with base-
lines) for the tasks of team performance prediction and sentiment
score prediction, respectively. These tables contain scores for all
the 35 different scenarios: columns represent 7 (6 baselines and the
proposed hypergraph tensor decomposition (t2v)) different models
while rows represent combination strategies. The scores for hyper-
graph auto-encoder (h2v-auto) are shown in the separate Table 4 as
auto-encoder only generates hyperedge embeddings.

Accuracy & Run-times As we can observe that for our datasets
and for both the regression tasks, almost all the embeddings (base-
lines and proposed) are performing very similarly in terms of accu-
racy. However, we can observer in Table 3 that tensor based method
(t2v) have significant less time than the expensive auto-encoder
technique (h2v-auto) (Table 4). Among the baselines e2v-hyp is the
fastest. We also observer that sentence based techniques run faster on
text-based LangNet dataset as compared to node2vec based methods
which are not designed for text data and vice-versa.

Interpretability All the matrix or tensor based algebraic tech-
niques: e2v, e2v-hyp and t2v, have a natural graph theoretic inter-
pretation. e2v and e2v-hyp are both well studied spectral techniques
with several eigen-value based interpretations. t2v has a hierarchical
hasse diagram based interpretation. In contrast the sentence and
node2vec based techniques can be understood only intuitively in
terms of the cost function. Apart from the noise which has a ran-
dom walk based interpretation, h2v-auto is a deep-learning based
method which exploits multiple level of non-linearity and is over all
a black-box approach.

Information Loss To reiterate one of the primary aims of this
study is to design methods that retain the hyperedge-level joint infor-
mation. The proposed tensor-based t2v principally capture the joint
distribution over various cardinality hyperedges unlike conditional
distribution like sentence embedding (h2v-dm) (which are more ap-
propriate for sequences). In comparison the other method proposed
h2v-auto, although is not directly designed to retain hyperedge-level
joint distribution, but we hypothesize that the deep layered neural
network should output highly informative non-linear representa-
tions. Several other baselines only retain pair-wise information. For
example, the methods using node2vec (in Section A.2) are based
on the skip-gram model, which learns embedding of nodes while
maximizing the pair-wise conditional probability of a node given
another node in a context. Similarly, the spectral methods (Section
A.2) are inherently two dimensional as they are based on matrix.
Same is the case with skip-gram based sentence embedding (h2v-
dbow). However, sentence embedding based on the DM architecture
(h2v-dm) maximizes the conditional probability of a word given the

Hyperedge2vec: Distributed Representations for Hyperedges Conference’18, August 2018, London, UK

Baselines Hypergraph

Sentence Embed based Node2Vec based Spectral methods Tensor Decomp.

Embed Combination h2v-DM h2v-DBOW h2v-inv h2v-dual e2v e2v-hyp (t2v)
Node Embed Sum 0.79308 0.79567 0.80418 0.79956 0.81183 0.81405 0.81341

Node Embed Sum + Hyperedge Embed 0.79651 0.80241 0.81362 0.80636 0.8113 0.81652 0.81299
Node Embed Average 0.81584 0.81733 0.82407 0.82281 0.81234 0.81369 0.81303

Node Embed Avg + Hyperedge Embed 0.8182 0.82077 0.83378 0.82896 0.81223 0.81608 0.8127
Only Hyperedge Embed 0.81203 0.81522 0.82189 0.81984 0.81233 0.81608 0.81341

Table 1: RMSE Scores of (t2v) compared to baselines for EQ II
Team Performance Analysis

Baselines Hypergraph

Sentence Embed based Node2Vec based Spectral methods Tensor Decomp.

Embed Combination h2v-DM h2v-DBOW h2v-inv h2v-dual e2v e2v-hyp (t2v)
Node Embed Sum 0.14081 0.14029 N/A N/A 0.14633 0.14854 0.14194

Node Embed Sum + Hyperedge Embed 0.14028 0.13883 N/A N/A 0.14627 0.14845 0.14144
Node Embed Average 0.14245 0.14115 N/A N/A 0.14665 0.14852 0.14381

Node Embed Avg + Hyperedge Embed 0.14178 0.14007 N/A N/A 0.14661 0.14845 0.14333
Only Hyperedge Embed 0.14194 0.14147 N/A N/A 0.14744 0.14844 0.1482

Table 2: RMSE Scores of (t2v) compared to baselines for
LangNet Sentiment Analysis

Baselines Hypergraph

Sentence Embed based Node2Vec based Spectral methods Tensor Decomp.

Dataset h2v-DM h2v-DBOW h2v-inv h2v-dual e2v e2v-hyp (t2v)
EQ2 455.84 103.47 90.05 93.41 128.03 12.01 213.37

LangNet 80.61 62.31 211.97∗ 207.86∗ 221.46 47.12 483.81
* these are average time taken for learning vertex embeddings only

Table 3: Average Runtime (seconds) of (t2v) compared to base-
lines across datasets

EQ II LangNet

Layer Sizes L1:128 L1:96/L2:32 L1:512/L2:128 L1:128 L1:96/L2:32 L1:512/L2:128
RMSE 0.81104 0.81512 0.81635 0.14568 0.14529 0.14784

Run Time 52 min 40 min 1 hr 20 min 2 hr 10 min 3 hr 20 min 6 hr

Table 4: RMSE Scores & Run-times of (h2v-auto)

previous set of words (context) without breaking this context (by
concatenating or averaging the embedding of the previous words).

Leveraging Hypergraph Topology is another feature that we
stress as a desirable property in a method which aims to build hyper-
edge embedding. Hypergraph topology is an important auxiliary in-
formation, if left unused is wastage of resources at hand. We observe
that except the sentence-based baselines, both proposed methods as
well as other baselines, which are adapted for the hypergraph setting,
leverage hypergraph topology using various hypergraph represen-
tations. Proposed h2v-auto generated noise using the hasse lattice
and t2v directly models the hasse lattice by storing hyperedge level
joint distribution along with hypergraph laplacian regularization.
Node2vec based and spectral baselines use various kinds of matrices
(that capture hypergraph topology up to varying degrees) as enlisted
in (3-6) in Section 4.2.1.

Ability to generate hyperedge embeddings directly is another
critical aim as was highlighted in the introduction. We emphasize that
none of the baselines are designed to give hyperedge embeddings in
a principled manner. However, both tensor based (t2v using Ak

dual)
as well as auto-encoder (h2v-auto) methods proposed in this paper
are specifically designed to give hyperedge representations directly.

Choice of Method Both tensor based (t2v using Ak
dual) as well

as auto-encoder (h2v-auto) methods proposed in this paper are able
to generate embeddings for all hyperedges of various cardinalities
present in data. However, the auto-encoder method cannot generate

node embeddings unlike tensor method (using Ak
hyp). On contrary,

the main advantage of auto-encoders is the crisp embedding achieved
via multiple levels of non-linearity offered by deep neural networks.
Although this non-linearity improves the accuracy of auto-encoder
methods very slightly (Table 4) as compared to tensor method (bot-
tom right corner of (Table 1 & 2), the computation cost of tensor is
far less than the auto-encoder method (Table 3 & 4). Intuitively, it
seems that depending upon the task at hand, in some tasks the reten-
tion of joint hyperedge-level information is more important while
modeling and data has lesser non-linear structure; or vice versa. But
the low computational cost (as reflected in our tasks) makes tensor
method definitely more lucrative. Together with the natural graph
theoretic interpretation, tensor methods in comparison to black-box
approach of deep learning based auto-encoder, makes them even
more viable.

Highlight Another distinguishing feature of our work is that we
leverage the existing structure (group structure) within the data.
Recent attempts along these lines in network literature [27, 41, 52]
argue that language models have ready-made context in the form of
sentences or paragraphs to train the model, which are not available
in networks, and therefore, they propose different ways to generate
this context. In contrast, we focus on networks where the context
is already present, e.g. collaboration networks where collaborative
teams are hyperedges, or language hyper-networks where sentences
are hyperedges.

4.4 Scalability
Both tensor based (t2v using Ak

dual) as well as auto-encoder (h2v-
auto) methods proposed in this paper are able to generate embed-
dings for all hyperedges of various cardinalities present in data.

Scalability for t2v The scalability issue in tensor based approach
arise on two fronts: (1) the increase in number of hyperedges (m) or
number of vertices (n) and (2) increase in parameter α (maximum
cardinality hyperedge considered in the cost function) or β (maxi-
mum degree vertex considered in the cost function). Also there are
two kinds of cost: (1) enumeration cost associated associated while
building hypergraph and dual tensors and (2) cost for hypergraph
tensor decomposition.

In case of hyperedge embeddings, for each vertex v of degree
(i.e. number of hyperedges it is part of) d(v) there are d(v)! entries
(permutations of hyperedges incident on v) to be enumerated to
fill the tensor A

d(v)
dual. This amounts to a worst case enumeration

cost of
∑
v ∈V d(v)!. However, d(v)! can grow prohibitively large

for vertices with large vertex degree d(v). We therefore, propose
to restrict ourselves to vertices of degree d(v) ≤ α . In fact we
propose the following augmented initialization scheme for the dual
tensors. For degree k (≤ α) vertex, vj ∈ {дq1 ,дq2 , ...,дqk } and
d(vj) = k ≤ α ,∀j ∈ {1, ...,n}, we initialize the following elements
of Ak

dual = (aq1,q2, ..,qk) ∈ R[k,m], same as Equation 4. For degree
k (> α) vertex, vj ∈ {дq1 ,дq2 , ...,дqk },∀j ∈ {1, ...,n}, we initialize

Conference’18, August 2018, London, UK Ankit Sharma, Shafiq R. Joty, Himanshu Kharakwal, and Jaideep Srivastava

elements of Aα
dual as,

aq1,q2, ..,qα = 1
aq(α+1),q(α+2),,q2α = 1

.......

.......

aq((
⌊
k
α

⌋
−1)α+1),q((

⌊
k
α

⌋
−1)α+2),,q((

⌊
k
α

⌋
)α)
= 1

(15)

and if δ = (k − (
⌊
k
α

⌋
α)) , 0, then we also initialize the following

element of Aδ
dual as:

aq((
⌊
k
α

⌋
)α+1),q((

⌊
k
α

⌋
)α+2),,qk

= 1. (16)

The above initialization basically partitions the k hyperedges in-
cident on a vertex into (

⌊
k
α

⌋
+ 1) (or (

⌊
k
α

⌋
), if α is a divisor of k)

partitions. There are several techniques to obtain such a partition, but
in this paper we simply sort the incident hyperedges by their cardi-
nality and then sequentially make sets of α elements each (except the
last partition which is of size (k−(

⌊
k
α

⌋
α)) is not an integer) as shown

in Equations(15- 16). This augmentation shall decrease the enumer-
ation cost to: ∆dual =

∑
v ∈Va d(v)! +

∑
v ∈Vb

(⌊
d (v)
α

⌋
α ! +

(
d(v) −

(
⌊
d (v)
α

⌋
α)
)
!
)
, where Va = {v |v ∈ V ,d(v) ≤ α } and Vb = (V −Va).

Depending upon the availability of resources (single machine or
a distributed computing resources) we can choose the cut-off de-
gree (α) accordingly. Notice that although we perform this degree
thresholding we still get embedding for all the hyperedges. However,
what we sacrifice is the higher order information that a given vertex
connects a set of incident hyperedges jointly. But for higher order
vertices we argue that as the vertex degree get too high our belief in
the inference that hyperedges incident are related diminishes. These
high degree vertices can be interpreted as highly popular person
participating in a huge number of teams, but should the embeddings
of these teams be related to each other is difficult to infer. In text data
these high degree nodes correspond to words occurring in a large
number of phrases, but this doesn’t mean the sentences are related,
rather its just that this word is quiet common.

In case of vertex embeddings, for each hyperedge дi ∈ G, we need
to initialize |дi |! elements of A |gi |

hyp, with a worst case enumeration
cost of

∑
дi ∈G |дi |!. Given this cost can be prohibitive as the hyper-

edge cardinalities increase, we propose an augmented initialization
scheme for hypergraph tensors where we shall restrict ourselves to
hyperedges of cardinality ≤ β . For hyperedges дi with |дi | = k ≤ β

we initialize Ak
hyp = (ap1,p2, ..,pk) ∈ R[k,n] same as Equation 2. For

hyperedge with cardinality |дi | > β , we initialize the elements of
A
β
hyp ∈ R[β,n] as follows:

apl1,p
l
2, ..,p

l
β
=

R(дi)
γ

(17)

where (pl1,p
l
2, ..,p

l
β) is the l-th permutation among l = {1, 2, ...,γ },

where γ =
(|дi |
β
)
. Enumeration cost now decreases to: ∆hyp =∑

дi ∈Ga |дi |! +
∑
дi ∈Gb

(|дi |
β
)
β!, where Ga = {дi |дi ∈ G, |дi | = β}

and Gb = (G −Ga). The choice of cut-off (β) is therefore, dictated
by the computation resources available. Notice that although we

perform this cardinality thresholding we still get embedding for all
the vertices. However, what we sacrifice is the higher order infor-
mation that a given hyperedge connects a set of incident vertices
jointly. Now, as the k increases, the number of k cardinality hy-
peredge decrease as well as the Ak

hyp tensor grows exponentially
making it increasingly sparse and less informative (in information
theoretic sense). Therefore, restricting to β cardinality hyperedges
is a trade-off between enumeration cost and hyperedge level joint
information loss. We observer that enumeration involved in both
hyperedge and vertex embeddings, Equations(15- 17), are either
vertex or hyperedge centric computations and can be performed in
a scalable manner using the generic hyperedge-centric distributed
computation libraries like MESH [29, 30] and HyperX [31].

Now we consider the tensor decomposition complexity and its
scalability. For hyperedge embeddings, the per iteration complexity
of the algorithm isO(∑α

δ=1 nnz(Aδ
dual)). Notice,

(∑α
δ=1 nnz(Aδ

dual)) ≤
∆dual. Similarly, in case of vertex embeddings the per iteration com-
plexity of the algorithm is O(∑β

k=cmin
nnz(Ak

hyp)). Notice,(∑β
k=cmin

nnz(Ak
hyp)) ≤ ∆hyp. Hypergraph Tensor Decomposition

basically involves learning vertex or hyperedge embeddings, i.e. pa-
rameters which are vertex or hyperedge centric. We can therefore,
convert the tensor decompositions into equivalent hyperedge or ver-
tex centric message passing algorithm and use the generic hyperedge
or vertex centric distributed computation libraries like MESH or Hy-
perX, as mentioned previously. Although, we highlight the possible
directions for scalability, but we propose them as a future work.

Scalability without partitioning for t2v As discussed previ-
ously, as we are performing hyperedge cardinality as well as vertex
degree thresholding and for that reason we developed augmented
enumeration schemes in Equation (15- 17). The partitioning in-
volved in this augmentation ensures that all the hyperedges and all
the vertices are linked by some vertex of degree ≤ α and some hy-
peredge of cardinality ≤ β . If this augmentation was not performed,
and we simply use the enumeration of Equations (2- 4), it was pos-
sible for example, that some hyperedge which has no vertex whose
degree is ≤ α , and therefore, would be left out and no embedding
would be learned for this hyperedge (because of cold start in tensor
decomposition). Rather than performing the augmentation we can
use semi-supervised learning to learn the embeddings for critical
hyperedges (hyperedges with all vertices with degree > α) using
the embeddings of the non-critical hyperedges ((hyperedges with at
least one vertex with degree ≤ α)). As all the hyperedges (critical
or not) are linked using the hypergraph topology, we can perform
semi-supervised learning using topology based regularization while
performing tensor decomposition. This can be done using a graph
regularization term ((kU(j)T)L(kU(j))) in our tensor decomposition
objective function ??. Here, L is the graph laplacian of our choice.
For example we can use Lhyp or Lgraph when we perform tensor
decomposition for vertex embeddings and use Linv or Ldual for hy-
peredge embeddings. Appendix A.2 mentions the details about these
laplacians.

Scalability for h2v-auto In case of auto-encoder method the
main scalability challenge lies in generating the noisy hyperedges.
For a given hyperedge the intermediate sub-lattice from which p

samples are drawn is of size O(nh), where h is max distance from

Hyperedge2vec: Distributed Representations for Hyperedges Conference’18, August 2018, London, UK

the hyperedge considered. Once this sampling is performed we have
total mp hyperedges as input for the auto-encoder, which is linear in
the number of hyperedge as p will be a constant. The main challenge
therefore, is to generate the noisy samples where we have to tackle
exponential size sub-lattice per hyperedge. Again, as this sampling
is done for each hyperedge separately (hyperedge-centric), we can
therefore, use distributed computing for hypergraphs using MESH
and HyperX, as mentioned before.

Issues with aggregating vertex embedding Furthermore, we
also observe that even simple element-wise summation or averaging
of node embeddings for the nodes (in a given hyperedge) also per-
form comparably when compared to hyperedge embedding alone.
From this we can infer that depending upon the dataset, if we have
less hyperedges and more nodes, than we would rather prefer to
simply learn the hyperedge embedding directly rather than learn-
ing node embeddings and then performing aggregating operation
over them. Aggregation might turn out be costly specially if average
hyperedge size is large and the choice of aggregation function is
an issue. Therefore, learning hyperedge embeddings directly seems
to be escape the problem of choosing the aggregation function all
together.

Scalability issues for baselines Another thing we notice, is that
in case of LangNet dataset, that node2vec based h2v-inv and h2v-
dual methods are simply unable to run (see N/A in Table 2). It
seems that in LangNet (and possibly in text data in general) the
hypergraph dual, Adual, which contain phrase to phrase edges turns
out be containing significantly more edges than the number of node
to node edges in Ahyp. Therefore, performing context generation
(using node2vec) over Ainv and Adual graphs turns out be very costly
and we were unable to get hyperedge embeddings for h2v-inv and
h2v-dual methods. Note, we however do get vertex embedding (as
mentioned with a * mark below Table 3). But as you can see that even
the time time taken for vertex embedding is similar or more than the
total time taken by spectral methods for learning both hyperedge as
well as vertex embedding, together. This indicates the robustness of
the spectral methods, specially the e2v-hyp for different kinds of
hypergraph data and edge densities (sparsity).

5 RELATED WORKS
Hypergraphs were studied rigorously by [11, 12] as a generaliza-
tion of graphs and directed hypergraphs have been introduced by
[13]. Hypergraph were argued for the first time as a model to nat-
urally capture higher-order relationships between sets of objects
across variety of domains by [23]. Hypergraphs have been used to
model complex networks in different fields including biology [33],
databases [24] and data mining [28, 62]. Within machine learn-
ing, algorithms guided by the structure of hypergraph were intro-
duced by [61] and have found applications in a variety of domains
[25, 37, 45, 46, 56]. Simplicial complex [40] based view of hyper-
graph using hasse lattice [48] within machine learning has recently
been proposed by [46].

Representation learning (RL) Node Representations in Graph:
Traditionally unsupervised node embedding learning has been dong
using latent models like matrix factorization [3] or by community
detection [53] based techniques for networks [8, 21, 44, 54]. In each
case there is a vector of features learned for a node, each of whose

entries reflects node’s association with some latent dimension or a
network community. More recently, there has been a revived interest
in graph embedding in form of context oriented techniques [27,
41, 52]. These techniques are inspired by recent unsupervised RL
methods in NLP [36, 39] where word embeddings are learned that
are similar to words in a given neighborhood or context. These
techniques differ in the manner they generate this context as well
as in the objective which they optimize. Also there are supervised
algorithms learn embeddings which are optimal for the specific
task at hand. This results in high accuracy but incurs significant
computational cost for training. Recently, several supervised learning
algorithms have been proposed for network analysis [55, 60] and
for text networks in a semi-supervised setting [51]. Finally, we
refer readers to a very recent and comprehensive survey on graph
embedding methods by [15].

Node Representations in Hypergraph: Learning embeddings for
nodes within a hypergraph while incorporating the hypergraph topol-
ogy using proxy graphs is introduced by [61]. Using graph proxy
destroys the hypredge-level joint information and thus, incur loss
of information. Also, [2] squarely criticize that such representations
can be learned by constructing graphs, which are proxies for the
hypergraph structure.

Set Representations: RL for sets using neural networks has been
proposed recently [59], where a memory network is used to compose
features sequentially but in an order invariant manner. In their very
recent paper, [43] have tried to answer this set ordering issue by the
use of random set theory. However, they do not consider embed-
ding but focus on learning set-level probabilities. More importantly,
both of these works, do not consider the hypergraph structure of
overlapping sets which is the main focus of this paper.

Tensors For comprehensive view of tensors, tensor decompo-
sition as well as applications we refer to the survey by [35]. The
connection between k-way tensor and k-uniform hypergraph eigen
values was established by [42]. The use of k-way symmetric tensor
and their non-negative decomposition for uniform hypergraph parti-
tioning was first introduced by [47]. But they are again restricted to
uniform hypergraphs.

6 CONCLUSION
In this paper we have proposed two methods to generate higher-order
representations for both hyperedges (representing sets of nodes) and
hypergraph nodes (that also take into account the hypergraph struc-
ture). First, is an auto-encoder based deep-learning method and
second, is a tensor-based algebraic method. Both learning models
are unique in the manner they leverage the existing structure present
in network data as context. While introducing a new idea of a dual
tensors corresponding to the hypergraph dual, we develop a novel
approach of using factors from joint decomposition of k-way tensors
corresponding to k-uniform sub-hypergraphs, as generic node &
hyperedge representations. We show that that both methods perform
comparably with several other baselines in terms of accuracy. We
also observe that the proposed tensor based methods are more ef-
ficient and also have a natural hypergraph theoretic interpretation;
unlike deep learning based black-box approach. We therefore, argue
that we have proposed more general methods which are principally
suited for hypergraphs (and therefore also for graphs) while main-
taining accuracy and efficiency.

Conference’18, August 2018, London, UK Ankit Sharma, Shafiq R. Joty, Himanshu Kharakwal, and Jaideep Srivastava

7 ACKNOWLEDGEMENTS
This work has been supported in part by the NSF Award IIS-1422802.

REFERENCES
[1] PubMed Data. https://www.ncbi.nlm.nih.gov/pubmed/. (????).
[2] Sameer Agarwal, Kristin Branson, and Serge Belongie. 2006. Higher order

learning with graphs. In Proceedings of the 23rd international conference on
Machine learning. ACM, 17–24.

[3] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and
Alexander J Smola. 2013. Distributed large-scale natural graph factorization. In
Proceedings of the 22nd international conference on World Wide Web. ACM,
37–48.

[4] Iftekhar Ahmed, Channing Brown, Andrew Pilny, Dora Cai, Yannick Atouba Ada,
and Marshall Scott Poole. 2011. Identification of groups in online environments:
The twist and turns of grouping groups. In Privacy, Security, Risk and Trust
(PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing
(SocialCom), 2011 IEEE Third International Conference on. IEEE, 629–632.

[5] Brett W Bader and Tamara G Kolda. 2007. Efficient MATLAB computations with
sparse and factored tensors. SIAM Journal on Scientific Computing 30, 1 (2007),
205–231.

[6] Grey Ballard, Tamara Kolda, and Todd Plantenga. 2011. Efficiently computing
tensor eigenvalues on a GPU. In Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW), 2011 IEEE International Symposium on. IEEE, 1340–
1348.

[7] Anthony F Bartholomay. 1960. Molecular set theory: A mathematical representa-
tion for chemical reaction mechanisms. Bulletin of Mathematical Biology 22, 3
(1960), 285–307.

[8] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral
techniques for embedding and clustering.. In NIPS, Vol. 14. 585–591.

[9] Yoshua Bengio and others. 2009. Learning deep architectures for AI. Foundations
and trends® in Machine Learning 2, 1 (2009), 1–127.

[10] Yoshua Bengio and Samy Bengio. 2000. Modeling high-dimensional discrete data
with multi-layer neural networks. In Advances in Neural Information Processing
Systems. 400–406.

[11] C. Berge. 1976. Graphs and hypergraphs. Vol. 6. Elsevier.
[12] Claude Berge. 1984. Hypergraphs: combinatorics of finite sets. Vol. 45. Elsevier.
[13] Alain Bretto. 2013. Hypergraph theory. An introduction. Mathematical Engineer-

ing. Cham: Springer (2013).
[14] Samuel R Bulò and Marcello Pelillo. 2009. A game-theoretic approach to hyper-

graph clustering. In Advances in neural information processing systems. 1571–
1579.

[15] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2017. A Com-
prehensive Survey of Graph Embedding: Problems, Techniques and Applications.
arXiv preprint arXiv:1709.07604 (2017).

[16] Eric C Chi and Tamara G Kolda. 2012. On tensors, sparsity, and nonnegative
factorizations. SIAM J. Matrix Anal. Appl. 33, 4 (2012), 1272–1299.

[17] Evangelia Christakopoulou and George Karypis. 2014. HOSLIM: higher-order
sparse linear method for top-n recommender systems. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer, 38–49.

[18] Fan RK Chung, Ronald L Graham, Peter Frankl, and James B Shearer. 1986.
Some intersection theorems for ordered sets and graphs. Journal of Combinatorial
Theory, Series A 43, 1 (1986), 23–37.

[19] Pierre Comon, Gene Golub, Lek-Heng Lim, and Bernard Mourrain. 2008. Sym-
metric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30, 3
(2008), 1254–1279.

[20] Joshua Cooper and Aaron Dutle. 2012. Spectra of uniform hypergraphs. Linear
Algebra Appl. 436, 9 (2012), 3268–3292.

[21] Trevor F Cox and Michael AA Cox. 2000. Multidimensional scaling. CRC press.
[22] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommendation

algorithms. ACM Transactions on Information Systems (TOIS) 22, 1 (2004), 143–
177.

[23] Ernesto Estrada and Juan A Rodriguez-Velazquez. 2005. Complex networks as
hypergraphs. arXiv preprint physics/0505137 (2005).

[24] R. Fagin. 1983. Degrees of acyclicity for hypergraphs and relational database
schemes. Journal of the ACM (JACM) 30, 3 (1983), 514–550.

[25] Shenghua Gao, Ivor Wai-Hung Tsang, and Liang-Tien Chia. 2013. Laplacian
sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 35, 1 (2013), 92–104.

[26] Debarghya Ghoshdastidar and Ambedkar Dukkipati. 2015. A provable generalized
tensor spectral method for uniform hypergraph partitioning. In International
Conference on Machine Learning. 400–409.

[27] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,

2016. 855–864. DOI:http://dx.doi.org/10.1145/2939672.2939754
[28] E.H. Han, G. Karypis, V. Kumar, and B. Mobasher. 1997. Clustering based on

association rule hypergraphs. University of Minnesota, Department of Computer
Science.

[29] Benjamin Heintz and Abhishek Chandra. 2015. Enabling Scalable Social Group
Analytics via Hypergraph Analysis Systems.. In HotCloud.

[30] Benjamin Heintz, Shivangi Singh, Rankyung Hong, Guarav Khandelwal, Corey
Tesdahl, and Abhishek Chandra. 2017. MESH: A Flexible Distributed Hypergraph
Processing System. (2017).

[31] Jin Huang, Rui Zhang, and Jeffrey Xu Yu. 2015. Scalable hypergraph learning
and processing. In Data Mining (ICDM), 2015 IEEE International Conference on.
IEEE, 775–780.

[32] TaeHyun Hwang, Ze Tian, Rui Kuangy, and Jean-Pierre Kocher. 2008. Learning
on weighted hypergraphs to integrate protein interactions and gene expressions
for cancer outcome prediction. In Data Mining, 2008. ICDM’08. Eighth IEEE
International Conference on. IEEE, 293–302.

[33] S. Klamt, U.U. Haus, and F. Theis. 2009. Hypergraphs and cellular networks.
PLoS computational biology 5, 5 (2009), e1000385.

[34] Tamara G Kolda. 2015. Numerical optimization for symmetric tensor decomposi-
tion. Mathematical Programming 151, 1 (2015), 225–248.

[35] Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and applications.
SIAM review 51, 3 (2009), 455–500.

[36] Quoc V Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents.. In ICML, Vol. 14. 1188–1196.

[37] Lei Li and Tao Li. 2013. News recommendation via hypergraph learning: en-
capsulation of user behavior and news content. In Proceedings of the sixth ACM
international conference on Web search and data mining. ACM, 305–314.

[38] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[39] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality. In
Proceedings of the 26th International Conference on Neural Information Process-
ing Systems (NIPS’13). 3111–3119.

[40] James R Munkres. 1984. Elements of algebraic topology. Vol. 2. Addison-Wesley
Menlo Park.

[41] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 701–
710.

[42] Liqun Qi. 2005. Eigenvalues of a real supersymmetric tensor. Journal of Symbolic
Computation 40, 6 (2005), 1302–1324.

[43] Seyed Hamid Rezatofighi, Anton Milan, Ehsan Abbasnejad, Anthony Dick, Ian
Reid, and others. 2016. DeepSetNet: Predicting Sets with Deep Neural Networks.
arXiv preprint arXiv:1611.08998 (2016).

[44] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality reduction
by locally linear embedding. Science 290, 5500 (2000), 2323–2326.

[45] Ankit Sharma, Rui Kuang, Jaideep Srivastava, Xiaodong Feng, and Kartik Singhal.
2015. Predicting small group accretion in social networks: A topology based
incremental approach. In 2015 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM). IEEE, 408–415.

[46] Ankit Sharma, Terrence J Moore, Ananthram Swami, and Jaideep Srivastava. 2017.
Weighted Simplicial Complex: A Novel Approach for Predicting Small Group
Evolution. In Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 511–523.

[47] Amnon Shashua, Ron Zass, and Tamir Hazan. 2006. Multi-way clustering using
super-symmetric non-negative tensor factorization. Computer Vision–ECCV 2006
(2006), 595–608.

[48] Steven Skiena. 1990. Hasse Diagrams. Implementing Discrete Mathematics:
Combinatorics and Graph Theory With Mathematica (1990), 163.

[49] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher Manning,
Andrew Ng, and Christopher Potts. 2013. Parsing With Compositional Vector
Grammars. In EMNLP.

[50] Karthik Subbian, Charu Aggarwal, and Jaideep Srivastava. 2013. Content-centric
flow mining for influence analysis in social streams. In Proceedings of the 22nd
ACM international conference on Conference on information & knowledge man-
agement. ACM, 841–846.

[51] Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. Pte: Predictive text embedding
through large-scale heterogeneous text networks. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 1165–1174.

[52] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. ACM, 1067–1077.

[53] Lei Tang and Huan Liu. 2011. Leveraging social media networks for classification.
Data Mining and Knowledge Discovery 23, 3 (2011), 447–478.

[54] Joshua B Tenenbaum, Vin De Silva, and John C Langford. 2000. A global
geometric framework for nonlinear dimensionality reduction. science 290, 5500

https://www.ncbi.nlm.nih.gov/pubmed/
http://dx.doi.org/10.1145/2939672.2939754

Hyperedge2vec: Distributed Representations for Hyperedges Conference’18, August 2018, London, UK

(2000), 2319–2323.
[55] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. 2014. Learning

Deep Representations for Graph Clustering.. In AAAI. 1293–1299.
[56] Ze Tian, TaeHyun Hwang, and Rui Kuang. 2009. A hypergraph-based learning al-

gorithm for classifying gene expression and arrayCGH data with prior knowledge.
Bioinformatics 25, 21 (2009), 2831–2838.

[57] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
2008. Extracting and composing robust features with denoising autoencoders.
In Proceedings of the 25th international conference on Machine learning. ACM,
1096–1103.

[58] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. 2010. Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion. Journal of Machine
Learning Research 11, Dec (2010), 3371–3408.

[59] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. 2016. Order Matters: Se-
quence to sequence for sets. In ICLR.

[60] Li Xiaoyi, Li Hui Du Nan, and others. 2013. A deep learning approach to link
prediction in dynamic networks. In Proceedings of the 2013 SIAM International
Conference on Data Mining. Philadelphia, PA, USA: SIAM.

[61] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006. Learning with
hypergraphs: Clustering, classification, and embedding. In Advances in neural
information processing systems. 1601–1608.

[62] D. Zhou, J. Huang, and B. Scholkopf. 2007. Learning with hypergraphs: Cluster-
ing, classification, and embedding. Advances in Neural Information Processing
Systems 19 (2007), 1601.

A APPENDIX
A.1 Hyperedge2Vec Using Sentence Embeddings
Recently, [36] proposed two representation learning methods for
sentences: DM model and DBOW model. Both the methods take
sentences as input and return embeddings for words as well as
the sentence. To apply these sentence embedding models directly
to hyperedges we generate a proxy sentence for each hyperedge
дi ∈ G as a sequence made by concatenating all the permutations
of the nodes (as words) in the hyperedge and further repeating
this sequence as many time this hyperedge occurred. For exam-
ple, for a three node hyperedge дi = {1, 4, 7} which has occurred
two times (R(дi) = 2) we make the following proxy sentence:
{1,4,7,1,7,4,7,1,4,7,4,1,4,1,7,4,7,1,1,4,7,1,7,4,7,1,4,7,4,1,
4,1,7,4,7,1} of length 12 (6 permutations times 2 occurrence). We
refer to the node and hyperedge embedding pairs resulting from DM,
DBOW models as h2v-dm and h2v-dbow, respectively.

A.2 Hyperedge2vec Using Spectral Embeddings
and node2vec

These set of methods extract embeddings as the eigenvectors associ-
ated with Laplacian matrices corresponding the following four adja-
cency matrices. (1) Adjacency matrix associated with a hypergraph
[61], which is defined as: Ahyp = (HT WeH − Dv) and laplacian:
Lhyp = (I − Dv

−1/2AhypDv
−1/2) where We (We(i, i) = R(дi)) is

a diagonal matrix containing the weights of each hyperedge and
Dv is a diagonal matrix containing the degree of each vertex (2)
Agraph = HT WeH is the weighted graph associated with the hyper-
graph (Ahyp) and its laplacian: Lgraph = (I − Dv

−1/2AgraphDv
−1/2)

(3) we consider the following adjacency matrix Ainv = HHT associ-
ated with what we refer to as the inverted hypergraph. This inverted
hypergraph is a graph (unlike the dual which is a hypergraph) and
there is an edge between two nodes if the hyperedges correspond-
ing to the nodes in the original hypergraph have nodes in common.
Weight of this edge is the number of common nodes. Its laplacian is:

Lhyp = (I − Dv
−1/2AhypDv

−1/2) (4) The adjacency matrix associ-
ated with the hypergraph dual is: Adual = (Hdual

T WvHdual −De) =
(HWvHT − De) where Wv is a diagonal matrix containing the
weights of each node and De is a diagonal matrix containing the
degree of each hyperedge. We assume no weights on the nodes and
take Wv = I. Its laplacian is: Ldual = (I − De

−1/2AdualDe
−1/2). We

get vertex embeddings using of (1) and hyperedge embedding using
(3) via eigen-decomposition, and we refer to them together as e2v.
Similarly, we get another pair of vertex embeddings using (2) and
hyperedge embedding using (4) which we refer as e2v-hyp.

[27] propose a representation method for nodes in a graph called
node2vec, which uses the skip-gram model [39] to obtain node
embeddings for an input graph. We get vertex embeddings using
of (1) and hyperedge embedding using (3) via node2vec, and we
refer to them together as h2v-hyp. Similarly, we get another pair of
vertex embeddings using (2) and hyperedge embedding using (4),
via node2vec which we refer as h2v-dual.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Hyperedge2vec using Hypergraph Tensor Decomposition
	3.2 Hyperedge2Vec Using Hasse De-noising Autoencoder

	4 Experiments
	4.1 Dataset Description
	4.2 Evaluation Methodology and Experimental Setup
	4.3 Results and Discussion
	4.4 Scalability

	5 Related Works
	6 Conclusion
	7 Acknowledgements
	References
	A Appendix
	A.1 Hyperedge2Vec Using Sentence Embeddings
	A.2 Hyperedge2vec Using Spectral Embeddings and node2vec

