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Motivation

Group structured data is more abundant than studied

Examples:
Social: MMO Game or Software Teams, research
collaborations, communication tools like Skype, etc.
Others: NLP (sentences), Biology (protein complexes),
e-commerce (item-sets) and Chemistry (reaction species).

Figure 1: Left is a collaboration network between four individuals and on
right is a network resulting from two sentences: “He is a good boy” &
“She is a good girl”; and eight word nodes.
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Representing Group Structure

Hypergraph is a generalization of graphs

Naturally captures higher-order relationships between sets of
objects

Hypergraph also has a corresponding Hasse Diagram

Figure 2: Example of a hypergraph (left) and the hasse diagram (right)
corresponding to this hypergraph’s simplicial complex.
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Problem Statement

Input:

V = {v1, v2, ..., vn} represents n elements (actors or words)
G = {g1, g2, ..., gm}, where gi ✓ V is a set (group or sentence)
Each gi 2 G has occurred R(gi ) times
As these sets are overlapping we consider them as a
hypergraph Ng = (V ,G )
Incidence matrix H 2 {0, 1}|G |⇥|V | associated to Ng , with
H(gi , v) = 1 if v 2 gi else 0.

Goal: Learn the mapping Z : G ! Rd from hyperedges to
feature representations (i.e., embeddings)
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Research Gaps

A Good Hyperedge Embedding Method should:

1 Learn hyperedge embeddings directly
2 Leverage the hypergraph topology
3 Not loose the hyperedge-level joint information

Node Embeddings for Graphs: Obvious limitation is that they
are limited to graphs and not principally designed for set-level
embedding. (not addresses 1, 2 or 3) [Perozzi et al., 2014]
[Tang et al., 2015, Grover and Leskovec, 2016,
Cai et al., 2017]
Node Embeddings for Hypergraphs:

Using proxy graphs: Leverage hypergraph topology but lossy
(Addresses 2) [Zhou et al., 2006, Hwang et al., 2008]
[Agarwal et al., 2006]
Preserving set-level info.: Capture hypergraph topology in a
loss-less manner (Addresses 2 & 3) [Shashua et al., 2006,
Bulò and Pelillo, 2009, Ghoshdastidar and Dukkipati, 2017].
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Research Gaps (contd.)

A Good Hyperedge Embedding Method should:
1 Learn hyperedge embeddings directly
2 Leverage the hypergraph topology
3 Not loose the hyperedge-level joint information

Sequence Embeddings: Limited to sequences (Addresses 3)
[Bengio and Bengio, 2000, Le and Mikolov, 2014]

Set Embeddings: Deep Learning and Random Vector Theory
based methods (Addresses 1 & 3) [Vinyals et al., 2016]
[Rezatofighi et al., 2016]

But, both completely ignore hypergraph structure (unaware!)
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Methods

We propose two methods in order to:
1 Directly learn hyperedge embeddings
2 For di↵erent cardinality hyperedges simultaneously (i.e.

non-uniform hypergraphs)
3 Capture the hypergraph structure in a principled manner
4 Retain the hyperedge-level higher-order information

First, is an algebraic method which is based on the novel
dual (addresses 1) tensors (addresses 4) of di↵erent sizes
decomposed simultaneously (addresses 2) while regularized
by the hypergraph topology (addresses 3)

Second, is neural network based deep (nonlinear, possibly
addresses 4) auto-encoder which embeds each hyperedge
vector (naturally addresses 1 & 2) with the noise generated
from hypergraph’s hasse topology (addresses 3)
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An Information Theoretic Result from Combinatorics

Proposition

Given a set of random variables X1, ...Xc (c � 2), and H(.) as the
information entropy, we have ([Chung et al., 1986, p. 34]):

H(X1, ...,Xc) 
� 1

c � 1

� X

(i ,j)✓2[c]

H(Xi ,Xj)

Therefore, the joint probability distribution over c cardinality
hyperedges is more informative (lower entropy) than the sum total
of information attained from probability distributions over each of
the

�c
2

�
dyadic edges. ) Tensors should retain set-level information
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Hyperedge2vec using Hypergraph Tensor Decomposition

Hypergraph Ng
extract����! k-uniform sub-hypergraph or k-graph

k-graph ) k
th order n-dimensional symmetric tensor

Ak
hyp = (ap1,p2,..,pk ) 2 R[k,n] with ap1,p2,..,pk = R(gi ), where

{vp1 , vp2 , ..., vpk} 2 gi and |gi | = k , 8i 2 {1, ...,m}.
Symmetry ) ap1,p2,..,pk is invariant under any permutation of
its indices (p1, p2, .., pk).

Define the lexicographically ordered index set for hyperedges:

Pk =
�
p|p = (p1, p2, .., pk) where {vp1 , vp2 , ..., vpk} 2 gi ,

8gi 2 G s.t. |gi | = k and p1 < p2 < ... < pk
 
,

and we have di↵erent sets {Pk}, 8k 2 {cmin, .., cmax}
(cardinality range). Also, we have |Pk | = |{gi : |gi | = k}|.
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Example Hypergraph Tensor

V = {1, 2, 3, 4, 5, 6, 7, 8}
G = {g1, g2, g3, g4, g5}
A2

hyp, P
2 = {(7, 8)}

A3
hyp, P

3 = {(2, 7, 8), (1, 2, 3)}
A4

hyp, P
4 = {(3, 4, 5, 6), (2, 3, 5, 7)}
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Hyperedge2vec using Hypergraph Tensor Decomposition

Dual Hypergraph Nd
extract����! k-uniform dual or k-dual

k-dual ) k
th order m-dimensional dual symmetric tensor

Ak
dual = (aq1,q2,..,qk ) 2 R[k,m] with aq1,q2,..,qk = 1, where

{gq1 , gq2 , ..., gqk} 3 vj and d(vj) = k , 8j 2 {1, ..., n}.
Lexicographically ordered index set for dual hyperedges
(vertices in the original hypegraph):

Qk =
�
q|q = (q1, q2, .., qk) where vj 2 {gq1 , gq2 , ..., gqk},
8vj 2 V s.t. |d(vj)| = k and q1 < q2 < ... < qk

 
,

and we have di↵erent sets {Qk}8k 2 {dmin, .., dmax} (vertex
degree range in the original hypergraph). We have
|Qk | = |{vi : d(vi ) = k}|
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Example Dual Tensor

Vdual = {g1, g2, g3, g4, g5}
Gdual = {gd

1 , g
d
2 , g

d
3 , g

d
4 , g

d
5 , g

d
6 , g

d
7 , g

d
8 }

A2
dual, P

2 = {(2, 3), (4, 5)}
A3

dual, P
3 = {(1, 2, 3), (1, 3, 4), (3, 4, 5)}



Motivation Representing Group Structure Problem Statement Research Gaps Methods Experiments Conclusion Acknowledgements

Example Dual Tensor

Vdual = {g1, g2, g3, g4, g5}
Gdual = {gd

1 , g
d
2 , g

d
3 , g

d
4 , g

d
5 , g

d
6 , g

d
7 , g

d
8 }

A2
dual, P

2 = {(2, 3), (4, 5)}
A3

dual, P
3 = {(1, 2, 3), (1, 3, 4), (3, 4, 5)}



Motivation Representing Group Structure Problem Statement Research Gaps Methods Experiments Conclusion Acknowledgements

Hyperedge2vec using Hypergraph Tensor Decomposition

For the hyperedge embeddings we consider the following
optimization formulation:

f (�,Z) =

↵2X

k=↵1

DKL

⇣
Mk
���Ak

dual

⌘

+ ⌘
dX

r=1

z|r Ldualzr

where,

Mk =
dX

r=1

�r (zr ⌦ zr ⌦ ...⌦ zr| {z }
k times

) ⌘
dX

r=1

�rz
⌦k
r

with ⌦ is the Kronecker product (generalized outer product),
zr 2 Rm, �r 2 R, Z 2 Rm⇥d with Z(:, r) = zr .
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Example Hypergraph Tensor Decomposition

f (�,Z)=DKL

 
dX

r=1

�rz
⌦2
r

�����A
2
dual

!
+ DKL

 
dX

r=1

�rz
⌦3
r

�����A
3
dual

!

| {z }

+⌘
dX

r=1

z|r Ldualzr

| {z }
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Hyperedge2Vec using Hasse De-noising Auto-encoder

W⇤,W0⇤ = arg min
W,W0

1

m

mX

i=1

L(xi , yi ) = arg min
W,W0

1

m

mX

i=1

L{xi ,�(W0(�(Wx̃i )))}

where �(x) = 1/(1 + e
�x) is sigmoid function, L is the cross-entropy loss:

L(x, y) =
nX

j=1

[x(j) log y(j) + (1� x(j)) log(1� y(j))]



Motivation Representing Group Structure Problem Statement Research Gaps Methods Experiments Conclusion Acknowledgements

Hyperedge2Vec using Hasse De-noising Auto-encoder

W⇤,W0⇤ = arg min
W,W0

1

m

mX

i=1

L(xi , yi ) = arg min
W,W0

1

m

mX

i=1

L{xi ,�(W0(�(Wx̃i )))}

where �(x) = 1/(1 + e
�x) is sigmoid function, L is the cross-entropy loss:

L(x, y) =
nX

j=1

[x(j) log y(j) + (1� x(j)) log(1� y(j))]



Motivation Representing Group Structure Problem Statement Research Gaps Methods Experiments Conclusion Acknowledgements

Hyperedge2Vec using Hasse De-noising Auto-encoder
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Datasets and Baselines

Two Datasets:
EverQuest II (EQ II): 5964 hyperedges (teams) among 6536
nodes (players)
Stanford Sentiment Treebank (LangNet): 141,410 hyperedges
(phrases) and 21,122 nodes (words)

Two Proposed Methods:
hypergraph tensor decomposition (t2v)
hypergraph auto-encoder (h2v-auto)

Six Baselines:
Language Embeddings: (1) h2v-DM (2) h2v-DBOW
Spectral Embeddings: (1) h2v-inv (2) h2v-dual
Graph Embeddings: (1) e2v (2) e2v-hyp

Except for h2v-auto all the baselines and t2v can generate
both vertex as well as hyperedge embeddings.
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Performance of Hypergraph Tensor Decomposition

Baselines Hypergraph

Sentence Embed based Node2Vec based Spectral methods Tensor Decomp.

Embed Combination h2v-DM h2v-DBOW h2v-inv h2v-dual e2v e2v-hyp (t2v)

Node Embed Sum 0.79308 0.79567 0.80418 0.79956 0.81183 0.81405 0.81341
Node Embed Sum + Hyperedge Embed 0.79651 0.80241 0.81362 0.80636 0.8113 0.81652 0.81299

Node Embed Average 0.81584 0.81733 0.82407 0.82281 0.81234 0.81369 0.81303
Node Embed Avg + Hyperedge Embed 0.8182 0.82077 0.83378 0.82896 0.81223 0.81608 0.8127

Only Hyperedge Embed 0.81203 0.81522 0.82189 0.81984 0.81233 0.81608 0.81341

RMSE Scores of (t2v) compared to baselines for EQ II Team
Performance Analysis

Baselines Hypergraph

Sentence Embed based Node2Vec based Spectral methods Tensor Decomp.

Embed Combination h2v-DM h2v-DBOW h2v-inv h2v-dual e2v e2v-hyp (t2v)

Node Embed Sum 0.14081 0.14029 N/A N/A 0.14633 0.14854 0.14194
Node Embed Sum + Hyperedge Embed 0.14028 0.13883 N/A N/A 0.14627 0.14845 0.14144

Node Embed Average 0.14245 0.14115 N/A N/A 0.14665 0.14852 0.14381
Node Embed Avg + Hyperedge Embed 0.14178 0.14007 N/A N/A 0.14661 0.14845 0.14333

Only Hyperedge Embed 0.14194 0.14147 N/A N/A 0.14744 0.14844 0.1482

RMSE Scores of (t2v) compared to baselines for LangNet Sentiment
Analysis

EQ II LangNet

Layer Sizes L1:128 L1:96/L2:32 L1:512/L2:128 L1:128 L1:96/L2:32 L1:512/L2:128

RMSE 0.81104 0.81512 0.81635 0.14568 0.14529 0.14784
Run Time 52 min 40 min 1 hr 20 min 2 hr 10 min 3 hr 20 min 6 hr

RMSE Scores & Run-times of (h2v-auto)
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Performance of Hypergraph Autoencoder and Run-times

EQ II LangNet

Layer Sizes L1:128 L1:96/L2:32 L1:512/L2:128 L1:128 L1:96/L2:32 L1:512/L2:128

RMSE 0.81104 0.81512 0.81635 0.14568 0.14529 0.14784
Run Time 52 min 40 min 1 hr 20 min 2 hr 10 min 3 hr 20 min 6 hr

RMSE Scores & Run-times of (h2v-auto)

Baselines Hypergraph

Sentence Embed based Node2Vec based Spectral methods Tensor Decomp.

Dataset h2v-DM h2v-DBOW h2v-inv h2v-dual e2v e2v-hyp (t2v)

EQ2 455.84 103.47 90.05 93.41 128.03 12.01 213.37
LangNet 80.61 62.31 211.97⇤ 207.86⇤ 221.46 47.12 483.81

* these are average time taken for learning vertex embeddings only

Average Runtime (seconds) of (t2v) compared to baselines across
datasets
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Choice of Method

Baselines Proposed

Language Embed Graph Embed Spectral Embed Tensor Embed Auto-encoder Embed

Property h2v-DM h2v-DBOW h2v-inv h2v-dual e2v e2v-hyp t2v h2v-auto

Interpret-ability NO YES YES YES YES YES YES NO
Information Loss NO YES YES YES YES YES NO NO

Use Hyp. Topology NO NO YES YES NO YES YES YES

Comparing methods
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Conclusion

Propose two hyperedge embedding methods designed
specifically for hypergraph data

Proposed methods embed general hypergraphs, unlike uniform
hypergraph which have been the focus in past research

Introduce the idea of dual tensors

Propose a novel idea of joint decomposition of hypergraph
tensors across cardinalities

Introduce the use of auto-encoder in context of hypergraphs

Highlight: Leverage the existing structure present in network
data as the auxiliary contextual information
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