Hyperedge2vec: Distributed Representations for Hyperedges

Ankit Sharma^{*}, Shafiq R. Joty^{**}, Himanshu Kharakwal[#] & Jaideep Srivastava^{*}

This work has been supported in part by the NSF Award IIS-1422802.

May 15, 2018

Outline

1 Motivation

- 2 Representing Group Structure
- O Problem Statement
- 4 Research Gaps
- 5 Methods
- 6 Experiments
- Conclusion
- 8 Acknowledgements

Motivation

- Group structured data is more abundant than studied
- Examples:
 - Social: MMO Game or Software Teams, research collaborations, communication tools like Skype, etc.
 - Others: NLP (sentences), Biology (protein complexes), e-commerce (item-sets) and Chemistry (reaction species).

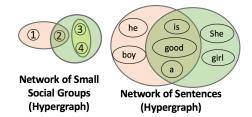


Figure 1: Left is a collaboration network between four individuals and on right is a network resulting from two sentences: "He is a good boy" & "She is a good girl"; and eight word nodes.

Representing Group Structure

- Hypergraph is a generalization of graphs
- Naturally captures higher-order relationships between sets of objects
- Hypergraph also has a corresponding Hasse Diagram

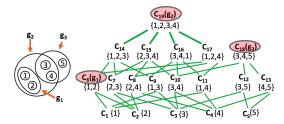


Figure 2: Example of a hypergraph (left) and the hasse diagram (right) corresponding to this hypergraph's simplicial complex.

Problem Statement

• Input:

- $V = \{v_1, v_2, ..., v_n\}$ represents *n* elements (actors or words)
- $G = \{g_1, g_2, ..., g_m\}$, where $g_i \subseteq V$ is a set (group or sentence)
- Each $g_i \in G$ has occurred $R(g_i)$ times
- As these sets are overlapping we consider them as a hypergraph $N_g = (V, G)$
- Incidence matrix $\mathbf{H} \in \{0,1\}^{|G| \times |V|}$ associated to N_g , with $\mathbf{H}(g_i, v) = 1$ if $v \in g_i$ else 0.
- Goal: Learn the mapping $\mathbf{Z} : G \to \mathbb{R}^d$ from hyperedges to feature representations (i.e., embeddings)

- A Good Hyperedge Embedding Method should:
 - Learn hyperedge embeddings directly

- A Good Hyperedge Embedding Method should:
 - Learn hyperedge embeddings directly
 - 2 Leverage the hypergraph topology

- A Good Hyperedge Embedding Method should:
 - Learn hyperedge embeddings directly
 - 2 Leverage the hypergraph topology
 - ONOT loose the hyperedge-level joint information

- A Good Hyperedge Embedding Method should:
 - Learn hyperedge embeddings directly
 - Leverage the hypergraph topology
 - In the second second
- Node Embeddings for Graphs: Obvious limitation is that they are limited to graphs and not principally designed for set-level embedding. (not addresses 1, 2 or 3) [Perozzi et al., 2014] [Tang et al., 2015, Grover and Leskovec, 2016, Cai et al., 2017]

- A Good Hyperedge Embedding Method should:
 - Learn hyperedge embeddings directly
 - Leverage the hypergraph topology
 - Solution Not loose the hyperedge-level joint information
- Node Embeddings for Graphs: Obvious limitation is that they are limited to graphs and not principally designed for set-level embedding. (not addresses 1, 2 or 3) [Perozzi et al., 2014] [Tang et al., 2015, Grover and Leskovec, 2016, Cai et al., 2017]
- Node Embeddings for Hypergraphs:

- A Good Hyperedge Embedding Method should:
 - Learn hyperedge embeddings directly
 - Leverage the hypergraph topology
 - Solution Not loose the hyperedge-level joint information
- Node Embeddings for Graphs: Obvious limitation is that they are limited to graphs and not principally designed for set-level embedding. (not addresses 1, 2 or 3) [Perozzi et al., 2014] [Tang et al., 2015, Grover and Leskovec, 2016, Cai et al., 2017]
- Node Embeddings for Hypergraphs:
 - Using proxy graphs: Leverage hypergraph topology but lossy (Addresses 2) [Zhou et al., 2006, Hwang et al., 2008] [Agarwal et al., 2006]

- A Good Hyperedge Embedding Method should:
 - Learn hyperedge embeddings directly
 - Leverage the hypergraph topology
 - Solution Not loose the hyperedge-level joint information
- Node Embeddings for Graphs: Obvious limitation is that they are limited to graphs and not principally designed for set-level embedding. (not addresses 1, 2 or 3) [Perozzi et al., 2014] [Tang et al., 2015, Grover and Leskovec, 2016, Cai et al., 2017]
- Node Embeddings for Hypergraphs:
 - Using proxy graphs: Leverage hypergraph topology but lossy (Addresses 2) [Zhou et al., 2006, Hwang et al., 2008] [Agarwal et al., 2006]
 - Preserving set-level info.: Capture hypergraph topology in a loss-less manner (Addresses 2 & 3) [Shashua et al., 2006, Bulò and Pelillo, 2009, Ghoshdastidar and Dukkipati, 2017].

- Learn hyperedge embeddings directly
- Leverage the hypergraph topology
- Sot loose the hyperedge-level joint information

- Learn hyperedge embeddings directly
- Leverage the hypergraph topology
- Sot loose the hyperedge-level joint information
- Sequence Embeddings: Limited to sequences (Addresses 3) [Bengio and Bengio, 2000, Le and Mikolov, 2014]

- Learn hyperedge embeddings directly
- 2 Leverage the hypergraph topology
- In the second second
- Sequence Embeddings: Limited to sequences (Addresses 3) [Bengio and Bengio, 2000, Le and Mikolov, 2014]
- Set Embeddings: Deep Learning and Random Vector Theory based methods (Addresses 1 & 3) [Vinyals et al., 2016] [Rezatofighi et al., 2016]

- Learn hyperedge embeddings directly
- 2 Leverage the hypergraph topology
- Sot loose the hyperedge-level joint information
- Sequence Embeddings: Limited to sequences (Addresses 3) [Bengio and Bengio, 2000, Le and Mikolov, 2014]
- Set Embeddings: Deep Learning and Random Vector Theory based methods (Addresses 1 & 3) [Vinyals et al., 2016] [Rezatofighi et al., 2016]
- But, both completely ignore hypergraph structure (unaware!)

Methods

- We propose two methods in order to:
 - Directly learn hyperedge embeddings
 - For different cardinality hyperedges simultaneously (i.e. non-uniform hypergraphs)
 - Optimize the hypergraph structure in a principled manner
 - Retain the hyperedge-level higher-order information

Methods

- We propose two methods in order to:
 - Directly learn hyperedge embeddings
 - For different cardinality hyperedges simultaneously (i.e. non-uniform hypergraphs)
 - Sapture the hypergraph structure in a principled manner
 - Retain the hyperedge-level higher-order information
- First, is an algebraic method which is based on the novel dual (addresses 1) tensors (addresses 4) of different sizes decomposed simultaneously (addresses 2) while regularized by the hypergraph topology (addresses 3)

Methods

- We propose two methods in order to:
 - Directly learn hyperedge embeddings
 - For different cardinality hyperedges simultaneously (i.e. non-uniform hypergraphs)
 - Sapture the hypergraph structure in a principled manner
 - 4 Retain the hyperedge-level higher-order information
- First, is an algebraic method which is based on the novel dual (addresses 1) tensors (addresses 4) of different sizes decomposed simultaneously (addresses 2) while regularized by the hypergraph topology (addresses 3)
- Second, is neural network based deep (nonlinear, possibly addresses 4) auto-encoder which embeds each hyperedge vector (naturally addresses 1 & 2) with the noise generated from hypergraph's hasse topology (addresses 3)

An Information Theoretic Result from Combinatorics

Proposition

Given a set of random variables $X_1, ..., X_c$ ($c \ge 2$), and H(.) as the information entropy, we have ([Chung et al., 1986, p. 34]):

$$H(X_1,...,X_c) \leq \left(\frac{1}{c-1}\right) \sum_{(i,j) \subseteq 2^{[c]}} H(X_i,X_j)$$

Therefore, the joint probability distribution over *c* cardinality hyperedges is more informative (lower entropy) than the sum total of information attained from probability distributions over each of the $\binom{c}{2}$ dyadic edges. \Rightarrow Tensors should retain set-level information

• Hypergraph $N_g \xrightarrow{\text{extract}} k$ -uniform sub-hypergraph or k-graph

- Hypergraph $N_g \xrightarrow{\text{extract}} k$ -uniform sub-hypergraph or k-graph
- k-graph $\Rightarrow k^{th}$ order *n*-dimensional symmetric tensor $\mathcal{A}_{hyp}^{k} = (a_{p_1,p_2,...,p_k}) \in \mathbb{R}^{[k,n]}$ with $a_{p_1,p_2,...,p_k} = R(g_i)$, where $\{v_{p_1}, v_{p_2}, ..., v_{p_k}\} \in g_i$ and $|g_i| = k, \forall i \in \{1, ..., m\}$.

- Hypergraph $N_g \xrightarrow{\text{extract}} k$ -uniform sub-hypergraph or k-graph
- k-graph $\Rightarrow k^{th}$ order *n*-dimensional symmetric tensor $\mathcal{A}_{hyp}^{k} = (a_{p_1,p_2,...,p_k}) \in \mathbb{R}^{[k,n]}$ with $a_{p_1,p_2,...,p_k} = R(g_i)$, where $\{v_{p_1}, v_{p_2}, ..., v_{p_k}\} \in g_i$ and $|g_i| = k, \forall i \in \{1, ..., m\}$.
- Symmetry ⇒ a_{p1,p2,..,pk} is invariant under any permutation of its indices (p1, p2, ..., pk).

- Hypergraph $N_g \xrightarrow{\text{extract}} k$ -uniform sub-hypergraph or k-graph
- k-graph $\Rightarrow k^{th}$ order *n*-dimensional symmetric tensor $\mathcal{A}_{hyp}^{k} = (a_{p_1,p_2,...,p_k}) \in \mathbb{R}^{[k,n]}$ with $a_{p_1,p_2,...,p_k} = R(g_i)$, where $\{v_{p_1}, v_{p_2}, ..., v_{p_k}\} \in g_i$ and $|g_i| = k, \forall i \in \{1, ..., m\}$.
- Symmetry ⇒ a_{p1,p2,..,pk} is invariant under any permutation of its indices (p1, p2, ..., pk).
- Define the lexicographically ordered index set for hyperedges:

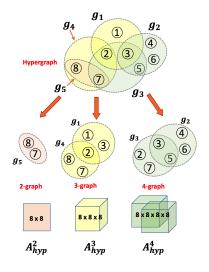
$$\mathcal{P}^{k} = \big\{ \mathbf{p} | \mathbf{p} = (p_{1}, p_{2}, ..., p_{k}) \text{ where } \{ v_{p_{1}}, v_{p_{2}}, ..., v_{p_{k}} \} \in g_{i}, \\ \forall g_{i} \in G \text{ s.t. } |g_{i}| = k \text{ and } p_{1} < p_{2} < ... < p_{k} \big\},$$

and we have different sets $\{\mathcal{P}^k\}, \forall k \in \{c_{min}, .., c_{max}\}$ (cardinality range). Also, we have $|\mathcal{P}^k| = |\{g_i : |g_i| = k\}|$.

Example Hypergraph Tensor

•
$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

• $G = \{g_1, g_2, g_3, g_4, g_5\}$
• $\mathcal{A}^2_{hyp}, \mathcal{P}^2 = \{(7, 8)\}$
• $\mathcal{A}^3_{hyp}, \mathcal{P}^3 = \{(2, 7, 8), (1, 2, 3)\}$
• $\mathcal{A}^4_{hyp}, \mathcal{P}^4 = \{(3, 4, 5, 6), (2, 3, 5, 7)\}$



• Dual Hypergraph $N_d \xrightarrow{\text{extract}} k$ -uniform dual or k-dual

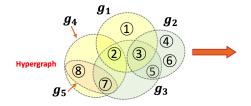
- Dual Hypergraph $N_d \xrightarrow{\text{extract}} k$ -uniform dual or k-dual
- k-dual $\Rightarrow k^{th}$ order *m*-dimensional *dual* symmetric tensor $\mathcal{A}_{dual}^k = (a_{q_1,q_2,..,q_k}) \in \mathbb{R}^{[k,m]}$ with $a_{q_1,q_2,..,q_k} = 1$, where $\{g_{q_1}, g_{q_2}, ..., g_{q_k}\} \ni v_j$ and $d(v_j) = k, \forall j \in \{1, ..., n\}$.

- Dual Hypergraph $N_d \xrightarrow{\text{extract}} k$ -uniform dual or k-dual
- k-dual $\Rightarrow k^{th}$ order *m*-dimensional *dual* symmetric tensor $\mathcal{A}_{dual}^k = (a_{q_1,q_2,..,q_k}) \in \mathbb{R}^{[k,m]}$ with $a_{q_1,q_2,..,q_k} = 1$, where $\{g_{q_1}, g_{q_2}, ..., g_{q_k}\} \ni v_j$ and $d(v_j) = k, \forall j \in \{1, ..., n\}$.
- Lexicographically ordered index set for *dual* hyperedges (vertices in the *original* hypegraph):

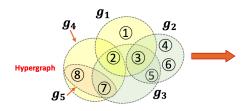
$$\begin{aligned} \mathfrak{Q}^{k} &= \big\{ \mathbf{q} | \mathbf{q} = (q_{1}, q_{2}, ..., q_{k}) \text{ where } v_{j} \in \{ g_{q_{1}}, g_{q_{2}}, ..., g_{q_{k}} \}, \\ \forall v_{j} \in V \text{ s.t. } |d(v_{j})| &= k \text{ and } q_{1} < q_{2} < ... < q_{k} \big\}, \end{aligned}$$

and we have different sets $\{\Omega^k\}\forall k \in \{d_{min}, .., d_{max}\}$ (vertex degree range in the *original* hypergraph). We have $|\Omega^k| = |\{v_i : d(v_i) = k\}|$

Example Dual Tensor



Example Dual Tensor

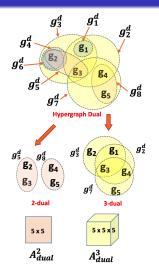


•
$$V_{dual} = \{g_1, g_2, g_3, g_4, g_5\}$$

•
$$G_{dual} = \{g_1^d, g_2^d, g_3^d, g_4^d, g_5^d, g_6^d, g_7^d, g_8^d\}$$

•
$$\mathcal{A}^2_{\text{dual}}, \mathcal{P}^2 = \{(2,3), (4,5)\}$$

•
$$\mathcal{A}^3_{\text{dual}}, \mathcal{P}^3 = \{(1,2,3), (1,3,4), (3,4,5)\}$$



• For the hyperedge embeddings we consider the following optimization formulation:

$$f(\lambda, \mathbf{Z}) = \sum_{k=lpha_1}^{lpha_2} D_{ ext{KL}} \left(\mathfrak{M}^k \Big\| \mathcal{A}_{ ext{dual}}^k
ight)$$

where,

$$\mathcal{M}^{k} = \sum_{r=1}^{d} \lambda_{r} (\underbrace{\mathbf{z}_{r} \otimes \mathbf{z}_{r} \otimes \ldots \otimes \mathbf{z}_{r}}_{k \text{ times}}) \equiv \sum_{r=1}^{d} \lambda_{r} \mathbf{z}_{r}^{\otimes k}$$

 For the hyperedge embeddings we consider the following optimization formulation:

Embeds an cardinality hyperedges

$$f(\lambda, \mathbf{Z}) = \sum_{k=lpha_1}^{lpha_2} D_{\mathrm{KL}} \left(\mathfrak{M}^k \Big\| \mathcal{A}_{\mathrm{dual}}^k \right)$$

where,

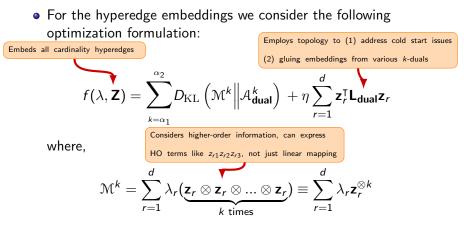
$$\mathcal{M}^{k} = \sum_{r=1}^{d} \lambda_{r} (\underbrace{\mathbf{z}_{r} \otimes \mathbf{z}_{r} \otimes \ldots \otimes \mathbf{z}_{r}}_{k \text{ times}}) \equiv \sum_{r=1}^{d} \lambda_{r} \mathbf{z}_{r}^{\otimes k}$$

• For the hyperedge embeddings we consider the following optimization formulation:

Embeds all cardinality hyperedges

$$f(\lambda, \mathbf{Z}) = \sum_{k=\alpha_1}^{\alpha_2} D_{\mathrm{KL}} \left(\mathcal{M}^k \middle\| \mathcal{A}_{\mathbf{dual}}^k \right)$$

where,
$$\mathcal{M}^k = \sum_{r=1}^d \lambda_r (\underbrace{\mathbf{z}_r \otimes \mathbf{z}_r \otimes \ldots \otimes \mathbf{z}_r}_{k \text{ times}}) \equiv \sum_{r=1}^d \lambda_r \mathbf{z}_r^{\otimes k}$$



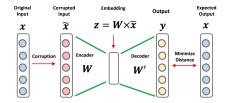
Example Hypergraph Tensor Decomposition

$$f(\lambda, \mathbf{Z}) = \underbrace{D_{\mathrm{KL}}\left(\sum_{r=1}^{d} \lambda_{r} \mathbf{z}_{r}^{\otimes 2} \middle\| \mathcal{A}_{\mathrm{dual}}^{2}\right) + D_{\mathrm{KL}}\left(\sum_{r=1}^{d} \lambda_{r} \mathbf{z}_{r}^{\otimes 3} \middle\| \mathcal{A}_{\mathrm{dual}}^{3}\right)}_{r=1} + \underbrace{\eta \sum_{r=1}^{d} \mathbf{z}_{r}^{\mathsf{T}} \mathbf{L}_{\mathrm{dual}} \mathbf{z}_{r}}_{r}$$

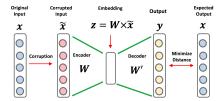
Example Hypergraph Tensor Decomposition

$$f(\lambda, \mathbf{Z}) = \underbrace{D_{\mathrm{KL}}\left(\sum_{r=1}^{d} \lambda_{r} \mathbf{Z}_{r}^{\otimes 2} \middle\| \mathcal{A}_{\mathrm{dual}}^{2}\right) + D_{\mathrm{KL}}\left(\sum_{r=1}^{d} \lambda_{r} \mathbf{Z}_{r}^{\otimes 3} \middle\| \mathcal{A}_{\mathrm{dual}}^{3}\right) + \eta \sum_{r=1}^{d} \mathbf{Z}_{r}^{\mathsf{T}} \mathbf{L}_{\mathrm{dual}} \mathbf{Z}_{r}}{\underbrace{\sum_{g \in \mathcal{I}_{s}} \sum_{z_{1} \in \mathcal{I}_{s}} \sum_{z_{2} \in \mathcal{I}_{s}} \sum_{z_{3}}}{\underbrace{\sum_{g \in \mathcal{I}_{s}} \sum_{z_{1} \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}{\underbrace{\int_{g \in \mathcal{I}_{s}} \frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}} + \underbrace{\int_{g \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}{\underbrace{\int_{g \in \mathcal{I}_{s}} \frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}} + \underbrace{\int_{g \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}{\underbrace{\int_{g \in \mathcal{I}_{s}} \frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}} + \underbrace{\int_{g \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}{\underbrace{\int_{g \in \mathcal{I}_{s}} \frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}} + \underbrace{\int_{g \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \sum_{z_{4} \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}{\underbrace{\int_{g \in \mathcal{I}_{s}} \frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}} + \underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}{\underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}}{\underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}{\underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}}} + \underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}{\underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}}{\partial \mathcal{I}_{s}}}}} + \underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}}{\underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}}} + \underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}}{\underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}}{\partial \mathcal{I}_{s}}}} + \underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}}{\underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}}{\partial \mathcal{I}_{s}}}}} + \underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}} + \underbrace{\int_{g \in \mathcal{I}_{s}} \underbrace{\frac{\partial \mathcal{I}_{g \in \mathcal{I}_{s}}}{\partial \mathcal{I}_{s}}}} + \underbrace{\int_{g \in \mathcal{$$

Hyperedge2Vec using Hasse De-noising Auto-encoder



Hyperedge2Vec using Hasse De-noising Auto-encoder

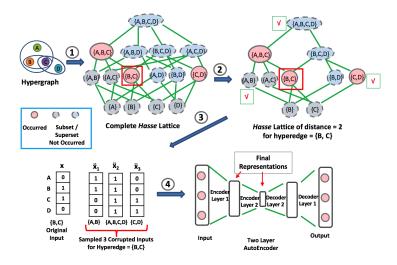


$$\mathbf{W}^*, \mathbf{W}'^* = \arg\min_{\mathbf{W}, \mathbf{W}'} \frac{1}{m} \sum_{i=1}^m L(\mathbf{x}_i, \mathbf{y}_i) = \arg\min_{\mathbf{W}, \mathbf{W}'} \frac{1}{m} \sum_{i=1}^m L\{\mathbf{x}_i, \sigma(\mathbf{W}'(\sigma(\mathbf{W}\tilde{\mathbf{x}}_i)))\}$$

where $\sigma(x) = 1/(1 + e^{-x})$ is sigmoid function, L is the cross-entropy loss:

$$L(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{n} [\mathbf{x}(j) \log \mathbf{y}(j) + (1 - \mathbf{x}(j)) \log(1 - \mathbf{y}(j))]$$

Hyperedge2Vec using Hasse De-noising Auto-encoder



Datasets and Baselines

• Two Datasets:

- *EverQuest II* (**EQ II**): 5964 hyperedges (teams) among 6536 nodes (players)
- Stanford Sentiment Treebank (LangNet): 141,410 hyperedges (phrases) and 21,122 nodes (words)
- Two Proposed Methods:
 - hypergraph tensor decomposition $(t2\nu)$
 - hypergraph auto-encoder (h2v-auto)
- Six Baselines:
 - Language Embeddings: (1) h2v-DM (2) h2v-DBOW
 - Spectral Embeddings: (1) h2v-inv (2) h2v-dual
 - Graph Embeddings: (1) e2v (2) e2v-hyp
- Except for h2v-auto all the baselines and t2v can generate both vertex as well as hyperedge embeddings.

Performance of Hypergraph Tensor Decomposition

		Hypergraph						
	Sentence	Embed based	Node2Vec based		Spectral methods		Tensor Decomp.	
Embed Combination	h2v-DM	h2v-DBOW	h2v-inv	h2v-dual	e2v	e2v-hyp	(t2v)	
Node Embed Sum	0.79308	0.79567	0.80418	0.79956	0.81183	0.81405	0.81341	
Node Embed Sum + Hyperedge Embed	0.79651	0.80241	0.81362	0.80636	0.8113	0.81652	0.81299	
Node Embed Average	0.81584	0.81733	0.82407	0.82281	0.81234	0.81369	0.81303	
Node Embed Avg + Hyperedge Embed	0.8182	0.82077	0.83378	0.82896	0.81223	0.81608	0.8127	
Only Hyperedge Embed	0.81203	0.81522	0.82189	0.81984	0.81233	0.81608	0.81341	

RMSE Scores of (t2v) compared to baselines for EQ II Team Performance Analysis

	Baselines								
	Sentence	Embed based	Node2Vec based		Spectral methods		Tensor Decomp.		
Embed Combination	h2v-DM	h2v-DBOW	h2v-inv	h2v-dual	e2v	e2v-hyp	(t2v)		
Node Embed Sum	0.14081	0.14029	N/A	N/A	0.14633	0.14854	0.14194		
Node Embed Sum + Hyperedge Embed	0.14028	0.13883	N/A	N/A	0.14627	0.14845	0.14144		
Node Embed Average	0.14245	0.14115	N/A	N/A	0.14665	0.14852	0.14381		
Node Embed Avg + Hyperedge Embed	0.14178	0.14007	N/A	N/A	0.14661	0.14845	0.14333		
Only Hyperedge Embed	0.14194	0.14147	N/A	N/A	0.14744	0.14844	0.1482		

RMSE Scores of (t2v) compared to baselines for LangNet Sentiment Analysis

Performance of Hypergraph Autoencoder and Run-times

	EQ II			LangNet			
Layer Sizes	L1:128	L1:96/L2:32	L1:512/L2:128	L1:128	L1:96/L2:32	L1:512/L2:128	
RMSE	0.81104	0.81512	0.81635	0.14568	0.14529	0.14784	
Run Time	52 min	40 min	1 hr 20 min	2 hr 10 min	3 hr 20 min	6 hr	

RMSE Scores & Run-times of (h2v-auto)

-	Baselines								
	Sentence	Embed based	Node2	/ec based	Spectra	l methods	Tensor Decomp.		
Dataset	h2v-DM	h2v-DBOW	h2v-inv	h2v-dual	e2v	e2v-hyp	(t2v)		
EQ2	455.84	103.47	90.05	93.41	128.03	12.01	213.37		
LangNet	80.61	62.31	211.97*	207.86*	221.46	47.12	483.81		

* these are average time taken for learning vertex embeddings only

Average Runtime (seconds) of (t2v) compared to baselines across datasets

Choice of Method

		Baselines						Proposed		
	Language Embed		Graph Embed		Spectral Embed		Tensor Embed	Auto-encoder Embed		
Property	h2v-DM	h2v-DBOW	h2v-inv	h2v-dual	e2v	e2v-hyp	t2v	h2v-auto		
Interpret-ability	NO	YES	YES	YES	YES	YES	YES	NO		
Information Loss	NO	YES	YES	YES	YES	YES	NO	NO		
Use Hyp. Topology	NO	NO	YES	YES	NO	YES	YES	YES		

Comparing methods

Conclusion

- Propose two hyperedge embedding methods designed specifically for hypergraph data
- Proposed methods embed general hypergraphs, unlike uniform hypergraph which have been the focus in past research
- Introduce the idea of *dual tensors*
- Propose a novel idea of joint decomposition of hypergraph tensors across cardinalities
- Introduce the use of auto-encoder in context of hypergraphs
- Highlight: Leverage the existing structure present in network data as the auxiliary contextual information

Motivation Representing Group Structure Problem Statement Research Gaps Methods Experiments Conclusion Acknowledgen

Acknowledgements

This work has been supported in part by the NSF Award IIS-1422802.

References I

 Agarwal, S., Branson, K., and Belongie, S. (2006).
 Higher order learning with graphs.
 In Proceedings of the 23rd international conference on Machine learning, pages 17–24. ACM.

Bengio, Y. and Bengio, S. (2000).

Modeling high-dimensional discrete data with multi-layer neural networks.

In *Advances in Neural Information Processing Systems*, pages 400–406.

- Bretto, A. (2013).
 - Hypergraph theory.

An introduction. Mathematical Engineering. Cham: Springer.

References II

Bulò, S. R. and Pelillo, M. (2009). A game-theoretic approach to hypergraph clustering. In Advances in neural information processing systems, pages 1571–1579.

Cai, H., Zheng, V. W., and Chang, K. C.-C. (2017).
 A comprehensive survey of graph embedding: Problems, techniques and applications.
 arXiv preprint arXiv:1709.07604.

Chung, F. R., Graham, R. L., Frankl, P., and Shearer, J. B. (1986).

Some intersection theorems for ordered sets and graphs. *Journal of Combinatorial Theory, Series A*, 43(1):23–37.

References III

Ghoshdastidar, D. and Dukkipati, A. (2017).

Uniform hypergraph partitioning: Provable tensor methods and sampling techniques.

The Journal of Machine Learning Research, 18(1):1638–1678.

Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 855–864.

References IV

Hwang, T., Tian, Z., Kuangy, R., and Kocher, J.-P. (2008). Learning on weighted hypergraphs to integrate protein interactions and gene expressions for cancer outcome prediction.

In Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on, pages 293–302. IEEE.

- Le, Q. V. and Mikolov, T. (2014). Distributed representations of sentences and documents. In *ICML*, volume 14, pages 1188–1196.
- Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 701–710. ACM.

References V

 Rezatofighi, S. H., Milan, A., Abbasnejad, E., Dick, A., Reid, I., et al. (2016).
 Deepsetnet: Predicting sets with deep neural networks. *arXiv preprint arXiv:1611.08998*.

Shashua, A., Zass, R., and Hazan, T. (2006).
 Multi-way clustering using super-symmetric non-negative tensor factorization.

Computer Vision-ECCV 2006, pages 595-608.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015).
Line: Large-scale information network embedding.
In Proceedings of the 24th International Conference on World Wide Web, pages 1067–1077. ACM.

References VI

- Vinyals, O., Bengio, S., and Kudlur, M. (2016). Order matters: Sequence to sequence for sets. In ICLR.
- Zhou, D., Huang, J., and Schölkopf, B. (2006). Learning with hypergraphs: Clustering, classification, and embedding.

In *Advances in neural information processing systems*, pages 1601–1608.